Skip to main content
Log in

Accretion and electrostatic interaction of interstellar dust grains; Interstellar grit

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This work is divided into 13 sections and 2 appendices, and aims to elucidate the accretion mechanism, which operates via image-theory forces, whenever two interstellar dust grains come close together. Section 1 is an introduction. Section 2 proposes that the distribution of interstellar grains be taken asn(r)r −4 to avoid distortion of the 3K microwave background by radiation from spinning grains. Section 3 examines each of three types of image force accretion processes, finding them to be dominant compared to radiation or gravitational forces by at least a factor of 1019. Section 4 states that only grains made of conducting material (e.g., graphite, ice, iron) are involved in image theory. Section 5 presents reasons for believing that two grains should coalesce on impact. Section 6 examines the motion of charged interstellar grains in Hi and Hii regions. Section 7 demonstrates, by way of four examples involving dust grains ofr=10−7 cm up tor=10−4 cm, that the image effects on conducting grains are not trivial, and that the dynamics involved is not to be compared at all with elementary Coulomb interaction of two changes. Section 8 concludes that accretion with not take place in Hi clouds if thermal (equipartition) velocities prevail among the dust particles. section 9 examines grain interactions in Hii regions: here, following an argument due to Spitzer, consideration is given to the case of a population of dust grains all streaming in the direction of the local magnetic field B at velocities of order 0.1 km s−1. It is shown that accretion takes place effectively, leading to the formation of interstellar ‘grit’, meaning grains of mass 10−8 to 10−7 gm, radius ≃ 0.1 mm; and leaving also a population ofr≳10−6 cm grains, which are observed in polarization and extinction measurements. The existence of the latter is now a deduction and not an ad hoc postulate, as previously, and implies a distribution of the general formn(r)r −3mean , in approximate agreement with that of Section 2. Section 10 considers the accretion mechanism as a cascade process. Section 11 shows that the existence of grains in space ofr ≃ 10−6 cm rules out an origin in supernova or galactic explosions, and supports a passive origin, perhaps in red giants or Mira variables. Section 12 discusses the implications of the results found for polarization observations and cosmogony, the latter being given a new foundation in which planets of different composition form automatically from a solar nebula. Section 13 is a conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailley, V. A.: 1964,Nature 201, 1202.

    Google Scholar 

  • Bandermann, L. W.: 1972,Monthly Notices Roy. Astron. Soc. 160, 321–338.

    Google Scholar 

  • Bleaney, B. I. and Bleaney, B.: 1965,Electricity and Magnetism, 2nd edn., Oxford Univ. Press, London, 764 pp.

    Google Scholar 

  • Bowyer, C. G., Mack, J., and Lampton, M.: 1970,Nature 225, 125–127.

    Google Scholar 

  • Bromage, G. E.: 1971,Nature 230, 172–175.

    Google Scholar 

  • Chiao, R. Y. and Wickramasinghe, N. C.: 1972,Monthly Notices Roy. Astron. Soc. 159, 361–372.

    Google Scholar 

  • Clemmow, P. C. and Dougherty, J. P.: 1969,Electrodynamics of Particles and Plasmas, Addison-Wesley Ltd., London, 457 pp.

    Google Scholar 

  • Donn, B. and Krishna Swamy, K. S.: 1969,Nature 224, 570.

    Google Scholar 

  • Donn, B., Stecher, T., and Wickramasinghe, N. C.: 1966,Astrophys. J. 145, 949–951.

    Google Scholar 

  • Duley, W. W.: 1970,Nature 227, 1277.

    Google Scholar 

  • Dunham, T.: 1939,Proc. Amer. Phil. Soc. 81, 277–293.

    Google Scholar 

  • Eddington, A. E.: 1929,Matter in Interstellar Space, BBC Publications Ltd., London, 27 pp.

    Google Scholar 

  • Eddington, A. E.: 1930,The Internal Constitution of the Stars, Dover Publications Ltd., New York.

    Google Scholar 

  • Gilman, R. C.: 1973,Monthly Notices Roy. Astron. Soc. 161, short communication (3 p.).

  • Gilra, D. P.: 1971,Nature 229, 237–241.

    Google Scholar 

  • Ginzburg, V. L.: 1965, in I. Robinson, A. Schild, and E. L. Schucking (eds.),Quasi-Stellar Sources and Gravitational Collapse, Univ. Chicago Press, Chicago and London, p. 286.

    Google Scholar 

  • Hackwell, J. A., Gehrz, R. D., and Woolf, N. J.: 1970,Nature 227, 822–823.

    Google Scholar 

  • Harrison, B. K., Thorne, K. S., Wakano, M. and Wheeler, J. A.: 1965,Gravitation Theory and Gravitational Collapse, Univ. of Chicago Press, Chicago and London, p. 84.

    Google Scholar 

  • Harwit, M.: 1970,Nature 226, 61–62.

    Google Scholar 

  • Henry, R. C. and Carruthers, G. R.: 1970,Science 170, 527–531.

    Google Scholar 

  • Hoyle, F. and Wickramasinghe, N. C.: 1968,Nature 218, 1126–1127.

    Google Scholar 

  • Hoyle, F., Wickramasinghe, N. C., and Reddish, V. C.: 1968,Nature 218, 1124–1126.

    Google Scholar 

  • Hoyle, F. and Wickramasinghe, N. C.: 1969,Nature 223, 459–462.

    Google Scholar 

  • Hoyle, F. and Wickramasinghe, N. C.: 1970a,Nature 226, 62–63.

    Google Scholar 

  • Hoyle, F. and Wickramasinghe, N. C.: 1970b,Nature,227, 473–474.

    Google Scholar 

  • Krishna Swamy, K. S. and Donn, B.: 1969,Nature 224, 788–789.

    Google Scholar 

  • Landau, R.: 1970,Nature 226, 1040–1041.

    Google Scholar 

  • Mack, J. E.: 1970,Nature 228, 543.

    Google Scholar 

  • Manning, P. G.: 1970a,Nature 226, 829–830.

    Google Scholar 

  • Manning, P. G.: 1970b,Nature,227, 1121–1123.

    Google Scholar 

  • Manning, P. G.: 1972,Nature 240, 547.

    Google Scholar 

  • Martin, P. G.: 1971,Monthly Notices Roy. Astron. Soc. 153, 279–285.

    Google Scholar 

  • Martin, P. G.: 1972a,Monthly Notices Roy. Astron. Soc. 155, 283–291.

    Google Scholar 

  • Martin, P. G.: 1972b,Monthly Notices Roy. Astron. Soc. 158, 63–78.

    Google Scholar 

  • Martin, P. G.: 1972c,Monthly Notices Roy. Astron. Soc. 159, 179–190.

    Google Scholar 

  • Martin, P. G., Illing, R., and Angel, J. R. P.: 1972,Monthly Notices Roy. Astron. Soc. 159, 191–201.

    Google Scholar 

  • Nandy, K. and Seddon, H.: 1970a,Nature 226, 63–64.

    Google Scholar 

  • Nandy, K. and Seddon, H.: 1970b,Nature 227, 264–265.

    Google Scholar 

  • Naranan, S. and Shah, G. A.: 1970,Nature 225, 834–836.

    Google Scholar 

  • Okuda, H. and Wickramasinghe, N. C.: 1970,Nature 226, 134–135.

    Google Scholar 

  • Reddish, V. C.: 1971,Nature 232, 40–41.

    Google Scholar 

  • Rees, M.: 1971, in R. K. Sachs (ed.),General Relativity and Cosmology, 1969 Varenna Lectures, Academic Press, New York and London, p. 327.

    Google Scholar 

  • Schmidt, M.: 1971,Observatory 91, No. 985, 209–214.

    Google Scholar 

  • Slysh, V. I.: 1969,Nature 224, 159–160.

    Google Scholar 

  • Spitzer, L.: 1941,Astrophys. J. 93, 369–379.

    Google Scholar 

  • Spitzer, L.: 1968,Diffuse Matter in Space, J. Wiley Interscience Inc., New York, 262 pp.

    Google Scholar 

  • Velovykin, G. P.: 1970,Nature 225, 254.

    Google Scholar 

  • Webster, A. S.: 1970,Nature 228, 44.

    Google Scholar 

  • Wesson, P. S.: 1973,Quart. J. Roy. Astron. Soc. 14, 9–64.

    Google Scholar 

  • Wickramasinghe, N. C.: 1967,Interstellar Grains, Chapman and Hall Ltd., London, 154 pp.

    Google Scholar 

  • Wickramasinghe, N. C.: 1969,Nature 224, 656–658.

    Google Scholar 

  • Wickramasinghe, N. C.: 1970a,Nature 225, 145–147.

    Google Scholar 

  • Wickramasinghe, N. C.: 1970b,Nature 227, 265–266.

    Google Scholar 

  • Wickramasinghe, N. C.: 1970c,Nature 227, 587–588.

    Google Scholar 

  • Wickramasinghe, N. C.: 1970d,Nature 228, 540–542.

    Google Scholar 

  • Wickramasinghe, N. C.: 1970e,Nature 228, 544.

    Google Scholar 

  • Wickramasinghe, N. C.: 1971,New Scientist 50, 694–696.

    Google Scholar 

  • Wickramasinghe, N. C., Donn, B. D., and Stecher, T. P.: 1966,Astrophys. J. 146, 590–593.

    Google Scholar 

  • Wickramasinghe, N. C. and Nandy, K.: 1970a,Monthly Notices Roy. Astron. Soc. 153, 205–227.

    Google Scholar 

  • Wickramasinghe, N. C. and Nandy, K.: 1970b,Nature 227, 51–53.

    Google Scholar 

  • Wickramasinghe, N. C.: 1972,Monthly Notices Roy. Astron. Soc. 159, 269–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesson, P.S. Accretion and electrostatic interaction of interstellar dust grains; Interstellar grit. Astrophys Space Sci 23, 227–255 (1973). https://doi.org/10.1007/BF00647661

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647661

Keywords

Navigation