Skip to main content
Log in

New AlPO4-sepiolite systems as acid catalysts, I. Preparation, texture, surface-chemical properties and cyclohexene skeletal isomerization conversion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of the addition of aluminium orthophosphate (Al/P=1) to sepiolite were investigated with respect to texture, porosity, surface chemistry and catalytic performance. The AlPO4-sepiolite catalysts, containing different weight compositions, were prepared by precipitation of AlPO4 (Al/P=1) with propylene oxide or aqueous ammonia on to commercial natural sepiolite. Sepiolite inhibits the AlPO4 crystallization which is found when pure AlPO4 is calcined at 873 K.

The surface acid-basic properties have been studied gas-chromatographically through the irreversible adsorption of organic acids and bases at temperatures in the range 473 to 673 K. In addition, the cyclohexene skeletal isomerization (CSI) acid catalysed test reaction to 1- and 3-methylcyclopentenes (1- and 3-MCP), was used to test catalyst performance. Catalytic activity, as an apparent rate constant, fits the Bassett-Habgood kinetic model for first-order processes. Marked changes were found in their catalytic properties as a function of the preparation method and the AlPO4 to sepiolite ratio.

AlPO4 addition induced acidity by increasing the strength of acid sites which resulted in a higher conversion which was accompanied by a greater selectivity for 1-MCP. The incorporation of AlPO4 to sepiolite also inhibited the loss of activity with the prolonged use of the catalyst which was found for reference pure natural sepiolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Aramendia, J. M. Campelo, S. Esteban, C. Jimenez, J. M. Marinas andJ. V. Sinisterra,Rev. Mex. Petrol. 12 (1980) 61.

    Google Scholar 

  2. J. M. Campelo, A. Garcia, D. Luna andJ. M. Marinas,Can. J. Chem. 61 (1983) 2567.

    Google Scholar 

  3. J. M. Campelo, J. M. Marinas, S. Mendioroz andJ. Pajares,J. Catal. 101 (1986) 484.

    Google Scholar 

  4. J. M. Campelo, A. Garcia, J. M. Gutierrez, D. Luna andJ. M. Marinas,J. Colloid Interface Sci. 95 (1983) 544.

    Google Scholar 

  5. J. M. Campelo, A. Garcia, D. Luna andJ. M. Marinas,J. Catal. 111 (1988) 106.

    Google Scholar 

  6. Idem., ibid. 102 (1986) 299.

    Google Scholar 

  7. Idem., in “Preparation of Catalysts IV” (Elsevier, Amsterdam, 1987) p. 199.

    Google Scholar 

  8. J. M. Campelo, J. M. Marinas andR. Perezossorio,An. Quim. 74 (1978) 86.

    Google Scholar 

  9. J. M. Campelo andJ. M. Marinas,Afinidad 38 (1981) 333.

    Google Scholar 

  10. J. M. Campelo, A. Garcia, D. Luna andJ. M. Marinas,Mater. Phys. 24 (1989) 51.

    Google Scholar 

  11. Idem., J. Colloid Interface Sci. 118 (1987) 98.

    Google Scholar 

  12. Idem., Bull. Soc. Chim. Fr. (1988) 283.

  13. Idem., J. Chem. Soc., Faraday Trans I 85 (1989) 2535.

    Google Scholar 

  14. A. Blanco, J. M. Campelo, A. Garcia, D. Luna, J. M. Marinas andM. S. Moreno,Appl. Catal. 53 (1989) 135.

    Google Scholar 

  15. K. Brauner andA. Preisinger,Tschermaks Miner. Petrog. Mitt. 6 (1956) 120.

    Google Scholar 

  16. R. H. S. Robertson,Chem. Ind. (1957) 1492.

  17. Idem., Silicates Industriels 38 (1973) 33.

    Google Scholar 

  18. J. M. Garcia-Segura, C. Cid, J. Martin De Llano andJ. G. Gavilanes,British Polym J. 19 (1987) 517.

    Google Scholar 

  19. A. J. Dandy andM. S. Nadiye-Tabbiruka,Clays Clay Miner. 30 (1982) 347.

    Google Scholar 

  20. M. N. Fernandez-Hernandez andT. Fernandez-Alvarez,An. Quim. 79 (1983) 342.

    Google Scholar 

  21. F. Rey-Bueno, M. Villafranca-Sanchez, E. Gonzalez-Pradas andJ. D. Lopez-Gonzalez,ibid. 81B (1985) 18.

    Google Scholar 

  22. M. Villafranca-Sanchez, E. Gonzalez-Pradas, J. D. Lopez-Gonzalez andF. Rey-Bueno,ibid. 81B (1985) 158.

    Google Scholar 

  23. M. Villafranca-Sanchez, A. Valverde-Garcia, E. Gonzalez-Pradas andF. Rey-Bueno,ibid. 83B (1987) 151.

    Google Scholar 

  24. E. Gonzalez-Pradas, A. Valverde-Garcia, M. Villafranca-Sanchez andF. Rey-Bueno,ibid. 83B (1987) 162.

    Google Scholar 

  25. J. M. Campelo, A. Garcia, D. Luna andJ. M. Marinas,Reactiv. Solids 3 (1987) 263.

    Google Scholar 

  26. H. Pines, in “The Chemistry of Catalytic Hydrocarbon Conversions” (Academic Press, New York, 1981) p. 9.

    Google Scholar 

  27. J. D. Lopez-Gonzalez, A. Ramirez-Saenz, F. Rodriguez-Reinoso, C. Valenzuela-Calahorro andL. Zurita-Herrera,Clay Miner. 16 (1981) 103.

    Google Scholar 

  28. J. L. Bonilla, J. D. Lopez-Gonzalez, A. Ramirez-Saenz, F. Rodriguez-Reinoso andC. Valenzuela-Calahorro,ibid. 16 (1981) 173.

    Google Scholar 

  29. F. Rodriguez-Reinoso, A. Ramirez-Saenz, J. D. Lopez-Gonzalez, C. Valenzuela-Calahorro andL. Zurita-Herrera,ibid. 16 (1981) 315.

    Google Scholar 

  30. L. Gonzalez-Hernandez, L. Ibarra-Rueda, A. Rodriguez-Diaz andC. Chamorro-Anton,Angew. Makromol. Chem. 103 (1982) 51.

    Google Scholar 

  31. L. Gonzalez-Hernandez, L. Ibarra-Rueda, A. Rodriguez-Diaz, J. S. Moya andF. J. Valle,Clay Miner. 19 (1984) 93.

    Google Scholar 

  32. L. Gonzalez-Hernandez, L. Ibarra-Rueda, A. Rodriguez-Diaz andC. Chamorro-Anton,J. Colloid Interface Sci. 109 (1986) 150.

    Google Scholar 

  33. A. Corma, J. Perez-Pariente, V. Fornes andA. Mifsud,Clay Miner. 19 (1984) 673.

    Google Scholar 

  34. A. Corma andJ. Perez-Pariente,Clay Miner. 22 (1987) 423.

    Google Scholar 

  35. S. Brunauer, P. H. Emmett andE. Teller,J. Amer. Chem. Soc,60 (1938) 309.

    Google Scholar 

  36. E. P. Barret, L. G. Joyner andP. Halenda,ibid. 73 (1951) 373.

    Google Scholar 

  37. A. Lecloux andJ. Pirard,J. Colloid Interface Sci. 70 (1979) 265.

    Google Scholar 

  38. A. Preisinger,Clays Clay Miner. 10 (1963) 365.

    Google Scholar 

  39. S. Brunauer, L. S. Deming, W. S. Deming andE. Teller,J. Amer. Chem. Soc. 62 (1940) 1723.

    Google Scholar 

  40. A. V. Kiselev andY. I. Yashin, in “Gas Adsorption Chromatography” (Plenum, New York, 1969).

    Google Scholar 

  41. V. R. Choudhary andL. K. Doraiswamy,Ind. Eng. Chem. Prod. Res. Dev. 10 (1971) 218.

    Google Scholar 

  42. A. K. Gosh andG. Curthoys,J. Chem. Soc., Faraday Trans I,79 (1983) 2569.

    Google Scholar 

  43. D. Bassett andH. W. Habgood,J. Phys. Chem. 64 (1960) 769.

    Google Scholar 

  44. D. Best andH. W. Wojciechowski,ibid. 47 (1977) 11.

    Google Scholar 

  45. A. N. Ko andH. W. Wojciechowski,Int. J. Chem. Kinet. 15 (1983) 1249.

    Google Scholar 

  46. A. Wheeler,Adv. Catal. 3 (1951) 250.

    Google Scholar 

  47. P. M. Viruela-Martin, I. Nebot, R. Viruela-Martin andJ. Planelles,J. Chem. Soc., Perkin Trans II (1986) 1053.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campelo, J.M., Garcia, A., Luna, D. et al. New AlPO4-sepiolite systems as acid catalysts, I. Preparation, texture, surface-chemical properties and cyclohexene skeletal isomerization conversion. J Mater Sci 25, 2513–2519 (1990). https://doi.org/10.1007/BF00638052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00638052

Keywords

Navigation