Skip to main content
Log in

Fluctuations in the resistive transition in aluminum films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The excess conductivity due to the thermodynamic fluctuations in aluminum films is experimentally investigated. The excess conductivity is described by the sum of the Aslamazov-Larkin and the Maki-Thompson terms. An empirical formula is found on the relation between the pair-breaking parameter δ(0) in the absence of the magnetic field and the normal-state film resistanceR sqN as δ(0)=6×10−4 R sqN . This formula might be explained in terms of the localized moments and the proximity effect in films. The result of the magnetic field dependence of the pair-breaking parameter revealed that δ(0) cannot be described by an effective magnetic field. The temperature dependence of the excess conductivity at higher temperatures systematically deviates from the theoretical values due to the breakdown of the mean-field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Glover,Phys. Letters 25A, 542 (1967); D. C. Naugle and R. E. Glover,Phys. Letters 28A, 110 (1968).

    Google Scholar 

  2. R. D. Parks,The Twelfth International Conference on Low Temperature Physics, Kyoto, 1970, to be published.

  3. P. C. Hohenberg,The Twelfth International Conference on Low Temperature Physics, Kyoto, 1970, to be published.

  4. L. G. Aslamazov and A. I. Larkin,Fiz. Tverd. Tela 10, 1104 (1968) [English transl.,Soviet Phys.—Solid State 10, 875 (1968)];Phys. Letters 26A, 238 (1968).

    Google Scholar 

  5. M. Strongin, O. F. Kammerer, J. Crow, R. S. Thompson, and H. L. Fine,Phys. Rev. Letters 20, 922 (1968).

    Google Scholar 

  6. R. O. Smith, B. Serin, and E. Abrahams,Phys. Letters 28A, 224 (1968).

    Google Scholar 

  7. L. R. Testardi, W. A. Reed, P. C. Hohenberg, W. H. Haemmerle, and G. F. Brennert,Phys. Rev. 181, 800 (1969).

    Google Scholar 

  8. W. E. Masker and R. D. Parks,Phys. Rev. B1, 2164 (1970).

    Google Scholar 

  9. A. K. Bhatnagar, P. Kahn, and T. J. Zammit,Solid State Commun. 8, 79 (1970).

    Google Scholar 

  10. J. E. Crow, R. S. Thompson, M. A. Klenin, and A. K. Bhatnagar,Phys. Rev. Letters 24, 371 (1970).

    Google Scholar 

  11. K. Kajimura and N. Mikoshiba,Phys. Letters 32A, 216 (1970).

    Google Scholar 

  12. K. Kajimura and N. Mikoshiba,Solid State Commun. 8, 1617 (1970).

    Google Scholar 

  13. B. Serin, R. O. Smith, and T. Mizusaki,International Conference on the Science of Superconductivity, Stanford, 1969, to be published.

  14. K. Maki,Progr. Theoret. Phys. (Kyoto)40, 193 (1968).

    Google Scholar 

  15. R. S. Thompson,Phys. Rev. B1, 327 (1970).

    Google Scholar 

  16. E. Abrahams and J. W. F. Woo,Phys. Letters 27A, 117 (1968).

    Google Scholar 

  17. A. Schmid,Z. Physik 215, 210 (1968).

    Google Scholar 

  18. H. Schmidt,Z. Physik 216, 336 (1968).

    Google Scholar 

  19. A. Schmid,Phys. Kondensierten Materie 5, 302 (1966).

    Google Scholar 

  20. E. Abrahams and T. Tsuneto,Phys. Rev. 152, 416 (1966).

    Google Scholar 

  21. L. P. Gor'kov and G. M. Eliashberg,Zh. Eksperim. i Teor. Fiz. 54, 612 (1968) [English transl.,Soviet Phys.—JETP 27, 328 (1968)].

    Google Scholar 

  22. H. L. Caswell,J. Appl. Phys. 32, 105 (1961).

    Google Scholar 

  23. J. P. Hurault,Phys. Rev. 179, 494 (1969).

    Google Scholar 

  24. A. Schmid,Phys. Rev. 180, 527 (1969).

    Google Scholar 

  25. T. Tsuzuki,Progr. Theoret. Phys. (Kyoto)43, 286 (1970).

    Google Scholar 

  26. K. Kajimura, N. Mikoshiba, and K. Yamaji,Phys. Rev., to be published.

  27. E. Abrahams, R. E. Prange, and M. J. Stephen,International Conference on the Science of Superconductivity, Stanford, 1969, to be published. The procedure to determineR N by using the Abrahamset al. formula was first developed by Mizusakiet al. See T. Mizusaki, Ph.D. thesis, Rutgers University (1971) (unpublished) and see also Ref. 13.

  28. F. E. Harper and M. Tinkham,Phys. Rev. 172, 441 (1968).

    Google Scholar 

  29. L. P. Gor'kov,Zh Eksperim. i Teor. Fiz. 37, 1407 (1959) [English transl.,Soviet Phys.—JETP 10, 998 (1960)]; D. Saint-James, G. Sarma, and E. J. Thomas,Type II Superconductivity (Pergamon Press, Oxford, 1969), p. 151.

    Google Scholar 

  30. S. Caplan and G. Chanin,Phys. Rev. 138, A 1428 (1965).

  31. W. E. Masker, S. Marčelja, and R. D. Parks,Phys. Rev. 188, 745 (1969).

    Google Scholar 

  32. K. Maki,Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 1035.

    Google Scholar 

  33. M. Strongin, R. S. Thompson, O. F. Kammer, and J. E. Crow,Phys. Rev. B1, 1078 (1970).

    Google Scholar 

  34. O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1967).

    Google Scholar 

  35. Handbook of Chemistry and Physics, C. D. Hodgman, ed. (The Chemical Rubber Publishing Co., Ohio, 1962), p. 2731.

    Google Scholar 

  36. H. Launius and H. Alloul,Solid State Commun. 7, 525 (1969).

    Google Scholar 

  37. D. G. Naugle and R. E. Glover,Phys. Letters 28A, 611 (1969).

    Google Scholar 

  38. L. N. Cooper,Phys. Rev. Letters 6, 689 (1961); W. Silvert and L. N. Cooper,Phys. Rev. 141, 336 (1966).

    Google Scholar 

  39. P. G. de Gennes,Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966), pp. 227–232.

    Google Scholar 

  40. W. L. McMillan,Phys. Rev. 167, 331 (1968).

    Google Scholar 

  41. J. W. Garland, K. H. Bennemann, and F. M. Mueller,Phys. Rev. Letters 21, 1315 (1968).

    Google Scholar 

  42. J. Appel,Phys. Rev. Letters 21, 1164 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajimura, K., Mikoshiba, N. Fluctuations in the resistive transition in aluminum films. J Low Temp Phys 4, 331–348 (1971). https://doi.org/10.1007/BF00629719

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00629719

Keywords

Navigation