Skip to main content
Log in

OH groups in nominally anhydrous framework structures: An infrared spectroscopic investigation of danburite and labradorite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The pleochroic behaviour of two nominally anhydrous structurally similar minerals, danburite and An59 labradorite, was investigated in the region of the OH stretching frequencies. Danburite shows a sharp absorption band at 3540 cm−1, labradorite shows a broad band with an absorption maximum at 3230 cm−1. On the basis of the pleochroic scheme of theinfrared (IR) absorption spectra it is proposed that the OH dipoles in danburite are located within the symmetry plane showing a distinct orientation parallel to [010]; the OH groups in labradorite are oriented approximately perpendicular to (001). The proposed models are in accordance with bond valence calculations showing that in both framework structures the most deficient oxygens, O5 in danburite and O C m in labradorite, are partially replaced by OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beran A (1976) Messung des Ultrarot-Pleochroismus von Mineralen. XIV. Der Pleochroismus der OH-Streckfrequenz in Diopsid. Tschermaks Mineral Petrogr Mitt 23:79–85

    Google Scholar 

  • Beran A (1986) A model of water allocation in alkali feldspar, derived from infrared-spectroscopic investigations. Phys Chem Minerals 13:306–310

    Google Scholar 

  • Beran A, Götzinger MA (1987) The quantitative IR spectroscopic determination of structural OH groups in kyanites. Mineral Petrol 36:41–49

    Google Scholar 

  • Brown ID, Wu KK (1976) Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr B 32:1957–1959

    Google Scholar 

  • Dunbar C, Machatschki F (1931) Structure of danburite, CaB2Si2O8. Z Kristallogr 76:133–146

    Google Scholar 

  • Gandais M, Willaime C (1984) Mechanical properties of feldspars. In: Brown WL (ed) Feldspars and feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 207–246

    Google Scholar 

  • Griggs D (1967) Hydrolytic weakening of quartz and other silicates. Geophys J R Astron Soc 14:19–31

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985) A model for the irradiative coloration of smoky feldspar and the inhibiting influence of water. Phys Chem Minerals 12:324–332

    Google Scholar 

  • Hofmeister AM, Rossman GR (1986) A spectroscopic study of blue radiation coloring in plagioclase. Am Mineral 71:95–98

    Google Scholar 

  • Lehmann G (1984) Spectroscopy of feldspars. In: Brown WL (ed) Feldspars and feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 121–162

    Google Scholar 

  • Machatschki F (1928) Zur Frage der Struktur und Konstitution der Feldspate. Centr Mineral Geol Paläont A/1928:97–104

  • Martin RF, Donnay G (1972) Hydroxyl in the mantle. Am Mineral 57:554–570

    Google Scholar 

  • Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486

    Google Scholar 

  • Phillips MW, Gibbs GV, Ribbe PH (1974) The crystal structure of danburite: a comparison with anorthite, albite, and reedmergnerite. Am Mineral 59:79–85

    Google Scholar 

  • Ribbe PH (1983) Chemistry, structure and nomenclature of feldspars. In: Ribbe PH (ed) Feldspar mineralogy, Rev Mineral 2. Miner Soc Am, pp 1–19

  • Ribbe PH (1984) Average structures of alkali and plagioclase feldspars: systematics and applications. In: Brown WL (ed) Feldspars and feldspathoids, NATO ASI Series C 137. D Reidel Publ Comp, Dordrecht Boston Lancaster, pp 1–54

    Google Scholar 

  • Smith JV (1974) Feldspar minerals, Vol. 1: Crystal structure and physical properties. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sugiyama K, Takéuchi Y (1985) Unusual thermal expansion of a B-O bond in the structure of danburite CaB2Si2O8. Z Kristallogr 173:293–304

    Google Scholar 

  • Taylor WH (1933) The structure of sanidine and other feldspars. Z Kristallogr 85:425–442

    Google Scholar 

  • Tullis J (1983) Deformation of feldspars. In: Ribbe PH (ed) Feldspar mineralogy, Rev Mineral 2. Miner Soc Am, pp 297–323

  • Wenk H-R, Joswig W, Tagai T, Korekawa M, Smith BK (1980) The average structure of An 62–66 labroadorite. Am Mineral 65:81–95

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

  • Yund RA (1983) Diffusion in feldspars. In: Ribbe PH (ed) Feldspar mineralogy, Rev Mineral 2. Miner Soc Am, pp 203–222

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beran, A. OH groups in nominally anhydrous framework structures: An infrared spectroscopic investigation of danburite and labradorite. Phys Chem Minerals 14, 441–445 (1987). https://doi.org/10.1007/BF00628821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00628821

Keywords

Navigation