Skip to main content
Log in

The low magnetic field properties of superconducting bulk yttrium barium copper oxide-sintered versus partially melted material

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A comparison of the low magnetic field properties of sintered (990°C) and partially melted samples (1050°C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10–100 Hz), low-a.c. magnetic field (0.01–9.0 Oe) a.c. susceptibility data show that gross changes in the a.c. loss component accompanies the observed changes in microstructure. The effects of applied d.c. magnetic fields (10–220 Oe) on the a.c. responses of these microstructures have also been probed. Data are analyzed and critically discussed in terms of current models appropriate for granular superconductors and in terms of older models appropriate for metallic alloys and compounds. Particular attention is given to published interpretations of the in-phase or loss component of the a.c. magnetic susceptibility and to the possible roles which minority phases and sample inhomogeneities may play in determining the detailed a.c. responses of these high-T coxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Crabtree, W. K. Kwok, and A. Umezawa, “Basic Properties of Oxide Superconductors,” inQuantum Field Theory as an Interdisciplinary Basis, F. C. Khanna, H. Umezawa, G. Kunstatter, and H. C. Lee, eds. (World Scientific Publishing Co. Ltd., 1988); J. Muller, “Materials Elaboration and Electronic Properties of High-T cOxide Superconductors,” Proc. of Genova Conference, July 1–3, 1987.

  2. There are numerous reviews on this subject. Two typical reviews are: A. P. Malozemoff, W. J. Gallagher, and R. E. Schwall, Am. Chem. Soc. Symp. September 1987; M. Nissenoff,Cryogenics January (1988).

  3. J. R. Clem and V. G. Kogan, Jpn.J. Appl. Phys. 26, 1161 (1988), Suppl. 26-3.

    Google Scholar 

  4. D. K. Finnemore, R. N. Shelton, J. R. Clem, R. W. McCallum, H. C. Ku, R. E. McCarley, S. C. Chen, P. Klavins, and V. Kogan,Phys. Rev. B35, 5319 (1987).

    Google Scholar 

  5. A. Benziger, J. L. Jorda, and J. Muller,Solid State Commun. (1987).

  6. A. Junod, A, Bezinge, T. Graf, J. L. Jorda,et. al., Europhys. Lett. 4, 247 (1987), see also A. Junod, A. Bezinge, and J. Muller.Physica C152, 50 (1988).

    Google Scholar 

  7. W. Meissner and R. Ochsenfeld,Naturwissenschaften 21, 787 (1933); see any elementary solid state physics textbook.

    Google Scholar 

  8. The acyronyms FC and ZFC are commonplace in recent publications; see, e.g., J. R. Thompson, D. K. Christen, S. T. Sekula, J. Brynestad, and Y. C. Kim,J. Mater. Res. 2, 779 (1987), D. C. Cronemeyer, A. P. Malozemoff, and T. R. McGuire,Mater. Res. Symp. Proc. 99, 837 (1988).

    Google Scholar 

  9. D. S. Ginley, E. L. Venturini, J. F. Kwak, R. J. Baughman, B. Morosin, and J. E. Schirber,Phys. Rev. B36, 829 (1988).

    Google Scholar 

  10. N. Garcia, S. Vieira, A. M. Baro,et al., Z. Phys. B 70, 9 (1988).

    Google Scholar 

  11. D. E. F. Farrell, M. R. DeGuire, B. S. Chandrasekhar, S. A. Alterovitz, P. R. Aron, and R. L. Fagaly,Phys. Rev. B 35, 8797 (1987), see also M. R. De Guire and D. E. Farrell,Adv. Ceram. Mater 2, No. 3B, 593 (1988).

    Google Scholar 

  12. H. Hojaji, K. A. Michael, A. Barkatt, A. N. Thorpe, M. Ware, I. Talmy, D Haught, and S. Alterescu,J. Mater. Res. 4, 28 (1988).

    Google Scholar 

  13. H. Hojaji, A. Barkatt, and R. A. Hein,Mater. Res. Bull. 23, 869 (1988).

    Google Scholar 

  14. A. N. Thrope and F. E. Senftle,Rev. Sci. Instrum. 30, 1006 (1959).

    Google Scholar 

  15. E. Maxwell,Rev. Sci. Instrum. 36, 533 (1965).

    Google Scholar 

  16. J. Z. Sun, D. J. Webb, M. Naito, K. Char, M. H. Hahn, J. W. P. Hsu, A. D. Kent, D. B. Mitzi, B. Oh, M. R. Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik,Phys. Rev. Lett. 58, 1574 (1987); A. Umezawa, G. W. Crabtree, J. Z. Liu, H. W. Weber, W. K. Kwok, L. H. Nunez, T. J. Moran, C. H. Sowers, and H. Claus,Phys. Rev. B 36, 7151 (1987); E. McHenry, J. McKittrich, S. Sasayama, V. Kwapong, R. C. O'Handley, and K. G. Kalonji,Phys. Rev. B 37, 623 (1988).

    Google Scholar 

  17. G. Xiao, F. H. Streitz, A. Gavrin, M. Z. Cieplak, J. Childress, M. Lu, A. Zwicker, and C. L. Chien,Phys. Rev. B 36, 2382 (1987); see also Ref. 16.

    Google Scholar 

  18. D. G. Schweitzer and B. Bertman,Phys. Rev. 152, 293 (1966).

    Google Scholar 

  19. W. A. Fietz and W. W. Webb,Phys. Rev. 178, 657 (1969).

    Google Scholar 

  20. C. P. Bean,Phys. Rev. Lett. 8, 250 (1962).

    Google Scholar 

  21. J. R. Thompson, D. K. Christen, S. T. Sekula, J. Brynstad, and Y. C. Kim,J. Mater. Res. 2, 779 (1987).

    Google Scholar 

  22. D. Shoenberg.Superconductivity (Cambridge University Press London, 1965), p. 1202.

    Google Scholar 

  23. J. R. Clem, H. R. Kerchner, and S. T. Sekula,Phys. Rev. B 14, 1893 (1976).

    Google Scholar 

  24. An early example is found in B. Renker, I. Apfelstedt, H. Kupfer, C. Politis, H. Rietschel, W. Schauer, H. Wuhl, U. Gottwick, H. Kniessel, U. Rauchschwalbe, H. Spille, and F. Steglich,Jpn. J. Appl. Phys. 26, 1169 (1987), Suppl. 26-3.

    Google Scholar 

  25. E. Polturak and B. Fisher,Phys. Rev. B 36, 5586 (1987).

    Google Scholar 

  26. E. Laurmann and D. Shoenberg,Proc. R. Soc. London A 198 560 (1949).

    Google Scholar 

  27. A. F. Khoder,Phys. Lett. 8, 378 (1983).

    Google Scholar 

  28. M. Couach, A. F. Khoder, and B. Barbara,Cryogenics 25, 695 (1985). This paper presents a fine review of the a.c. inductance technique and presents some intriguing data in support of Khoder's theory.

    Google Scholar 

  29. B. Barbara, A. F. Khoder, M. Couach, and J. Y. Henry,Europhys. Lett. 6, 612 (1988).

    Google Scholar 

  30. B. T. Matthias, T. H. Geballe, R. H. Williams, E. Corezwit, and G. W. Hull, Jr.,Phys. Rev. A 139, 1501 (1965).

    Google Scholar 

  31. R. A. Hein,Phys. Rev. B 33, 7539 (1986).

    Google Scholar 

  32. C. Kittle, S. Fahy, and S. G. Louie,Phys. Rev. B 37, 642 (1988).

    Google Scholar 

  33. K. Mendelssohn,Proc. R. Soc. London A 152, 34 (1935).

    Google Scholar 

  34. For a general review, seeInhomogeneous Superconductors, AIP Proceedings No. 58, D. U. Gubser and S. A. Wolf, eds. (American Institute of Physics, New York 1978).

    Google Scholar 

  35. R. A. Hein and R. L. Falge, Jr.,Phys. Rev. 123, 407 (1961).

    Google Scholar 

  36. M. Osofsky, S. A. Wolf, L. E. Toth, and R. A. Hein, unpublished results.

  37. In calculating a ΔT cfor the higher ¦h a.c.¦values, we have taken for the melted samplesV Q(77 K) ≈ 0.9 VQ (S). Based on data obtained down to 4.2 K; this estimate should be good to a few percent.

  38. B. N. Das, J. E. Cox, R. W. Huber, and R. A. Meussner,Metall. Trans. A 8, 541 (1977), see also Ref. 28 for similar results with VcSi.

    Google Scholar 

  39. A. Junod, A. Bezinge, D. Cattani, J. Cors, M. Decroux, O. Fischer. P. Genoud, L. Hoffmann, J. L. Jorda, J. Muller, and E. Walker,Jpn. J. Appl. Phys. 26, 1021 (1987), Suppl. 26–3.

    Google Scholar 

  40. R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson,Cryogenics 27, 475 (1987).

    Google Scholar 

  41. A. Raboutou, P. Peyral, J. Rosenblatt, C. Lebau, O. Pena, A. Perrin, C. Perrin, and M. Sergent,Europhys. Lett. 4, 1321 (1987).

    Google Scholar 

  42. E. Maxwell and M. Strongin,Phys. Rev. Lett. 10, 212 (1963).

    Google Scholar 

  43. There are several variations in the mathematics used in the development of this model, e.g., C. A. M. van der Klein, J. D. Elen, R. Worf, and D. de Klerk,Physica 49, 98 (1970), R. W. Rollins and J. Silcox,Phys. Rev. 155, 404 (1967).

    Google Scholar 

  44. T. Ishida and H. Mazaki,Jpn. J. Appl. Phys. 52, 6793 (1981).

    Google Scholar 

  45. R. B. Goldfarb, A. F. Clark, A. J. Panson, and A. I. Braginsky, Mater. Res. Soc. Symp. Extended abstracts, EA-11, 261 (1987).

    Google Scholar 

  46. C. Ayache, B. Barbara, E. Bonjour, P. Burlet, R. Calemczuk, M. Couach, M. J. G. M. Jurgens, J. Y. Henry, and J. Rossat-Mignod,Physica, B 148, 305 (1987).

    Google Scholar 

  47. B. Renker, I. Apfelstedt, H. Kupfer, C. Politis, H. Rietschel, W. Schauer, and H. Wuhl,Z. Phys. B 67, 1 (1987).

    Google Scholar 

  48. H. Kupfer, S. M. Green, C. Jiang, Yu Mei. H. L. Luo, R. Meier-Hirmer, and C. Politis,Z. Phys. B 71, 63 (1988).

    Google Scholar 

  49. I. Apfelstedt, R. Flukiger, H. Kupfer, R. Meier-Hirmer, B. Obst, C. Politis, W. Schauer, F. Weiss, and H. Wuhl,Jpn. J. Appl. Phys. 26, 1181 (1987), Suppl. 26-3.

    Google Scholar 

  50. D. Shoenberg.Proc. Cambridge Philos. Soc. 33, 559 (1937).

    Google Scholar 

  51. G. D. Cody and R. E. Miller,Phys. Rev. 173, 481 (1968).

    Google Scholar 

  52. T. K. Worthington, W. J. Gallagher, D. L. Kaiser, F. H. Holtzbergand, T. R. Dinger,Physica C 153–155, 32 (1988).

    Google Scholar 

  53. R. W. Rollins and J. Silcox,Phys. Rev. 155, 404 (1967).

    Google Scholar 

  54. A. P. Malozemoff, T. K. Worthington, Y. Yeshurun, F. H. Holtzberg, and P. H. Kes,Phys. Rev. B 38, 7203 (1988).

    Google Scholar 

  55. M. Nikolo and R. B. Goldfarb,Phys. Rev. B 39, April 1, 1989 (preprint).

  56. C. Kittle,Phys. Today. p.93, May (1988).

  57. S. Jin, R. C. Sherwood, E. M. Gyorgy, T. H. Tiefel, R. B. van Dover, S. Nakahara, L. F. Schneemeyer, R. A. Fastnacht, and M. E. Davis,Appl. Phys. Lett. 54, 5 4 (1989).

    Google Scholar 

  58. R. P. Hudson,Phys. Rev. 29, 283 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hein, R.A., Hojaji, H., Barkatt, A. et al. The low magnetic field properties of superconducting bulk yttrium barium copper oxide-sintered versus partially melted material. J Supercond 2, 427–461 (1989). https://doi.org/10.1007/BF00627558

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00627558

Key words

Navigation