Skip to main content
Log in

Optical fibre-grating pulse compression

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Numerical simulation is used to consider non-linear pulse propagation in fibres and subsequent pulse compression in a dispersive delay line. It is shown that for small initial pulse powers the conventional non-linear Schrödinger equation (NSE) is quite accurate to describe the process of pulse propagation in fibres. In this case initially symmetrical pulses undergo squaring and spectral broadening in fibres, and frequency chirp is linearized over most of the pulse, while shapes of the pulse, spectrum and frequency chirp remain symmetrical at the output of the fibre. There is a certain optimum fibre lengthZ opt which is determined by the initial pulse parameters and fibre characteristics for pulse compression in the dispersive delay line. When the fibre lengthZ>Z opt the optical wave breaking effect distorts the linearity of the frequency chirp and thus deteriorates the quality of the compressed pulse. The region of NSE approximation accuracy is determined. It is demonstrated that at increase of the initial pulse power (initial pulse width makes no difference) the NSE approximation becomes inaccurate. So the pulse dynamics in the fibre were described by the modified NSE derived in the higher-order approximation of the method of slowly varying amplitudes from Maxwell's equations. In this case the shock wave appears at the trailing edge of the pulse, which accelerates the wave breaking process. This results in a decrease of the optimum fibre length and deterioration of compressed pulse parameters, compared with the NSE case. Spectral windowing of the extreme Stokes components of the pulse spectrum permits significant improvement in the quality of the compressed pulse. The main features of the compression of pulses with asymmetrical initial shape are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Grischkowsky andA. C. Balant,Appl. Phys. Lett. 41 (1982) 1.

    Google Scholar 

  2. C. H. Brito-Crus, R. L. Fork andC. V. Shank, Proceedings of Conference on Lasers and Electro-optics (CLEO), Optical Society of America, Baltimore (1987), Paper MDI.

    Google Scholar 

  3. E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov andD. G. Fursa,Kvant. Electron. (Moscow) 14 (1987) 662.

    Google Scholar 

  4. A. Hasegawa andF. Tappert,Appl. Phys. Lett. 23 (1973) 142.

    Google Scholar 

  5. L. F. Mollenauer, R. H. Stolen andJ. P. Gordon,Phys. Rev. Lett. 45 (1980) 1095.

    Google Scholar 

  6. R. Meinel,Opt. Commun. 47 (1983) 343.

    Google Scholar 

  7. W. J. Tomlinson, R. H. Stolen andC. V. Shank,J. Opt. Soc. Am. B1 (1984) 139.

    Google Scholar 

  8. S. A. Akhmanov, V. A. Vysloukh andA. S. Chirkin,Uspekhi Fiz. Nauk [Soviet Phys. Usp.] 149 (1986) 449.

    Google Scholar 

  9. E. A. Golovchenko, E. M. Dianov, A. N. Pilipetskii, A. M. Prokhorov andV. N. Serkin,Pis'ma Zh. Eksp. Teor. Fiz. 45 (1987) 73 [JETP Lett. 45 (1987) 91].

    Google Scholar 

  10. J. Kodama, A. Hasegawa,IEEE J. Quantum Electron. QE-23 (1987) 510.

    Google Scholar 

  11. F. De Martini, C. H. Townes, T. K. Gustafson andP. L. Kelley,Phys. Rev. A164 (1967) 312.

    Google Scholar 

  12. G. Yang andY. R. Shen,Opt. Lett. 9 (1984) 510.

    Google Scholar 

  13. D. Anderson andS. Lisak,Phys. Rev. A27 (1983) 1393.

    Google Scholar 

  14. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov andV. N. Serkin,Pis'ma Zh. Eksp. Teor. Fiz. 42 (1985) 74 [JETP Lett. 42 (1985) 87].

    Google Scholar 

  15. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov andV. N. Serkin,Dokl. Akad. Nauk SSSR 288 (1986) 851.

    Google Scholar 

  16. V. A. Vysloukh andT. A. Matveeva,Kvant. Electron. (Moscow) 14 (1987) 792.

    Google Scholar 

  17. I. Thomazeav et al., Opt. Lett. 10 (1985) 223.

    Google Scholar 

  18. A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin andD. V. Haidarov,Pis'ma Zh. Eksp. Teor. Fiz. 46 (1987) 175 [JETP Lett. 46 (1987) 221].

    Google Scholar 

  19. E. M. Dianov, A. S. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, N. F. Stel'makh andA. A. Fomichev,Pis'ma Zh. Eksp. Teor. Fiz. 41 (1985) 242 [JETP Lett. 41 (1985) 294].

    Google Scholar 

  20. F. M. Mitschuke andL. F. Mollenauer,Opt. Lett. 11 (1986) 659.

    Google Scholar 

  21. J. P. Gordon,Opt. Lett. 11 (1986) 662.

    Google Scholar 

  22. E. B. Treacy,IEEE J. Quantum Electron. QE-5 (1969) 454.

    Google Scholar 

  23. W. J. Tomlinson, R. H. Stolen andA. M. Johnson,Opt. Lett. 10 (1985) 457.

    Google Scholar 

  24. E. Bourkoff, N. Zhao, R. I. Joseph andD. N. Christodoulides,Opt. Commun. 62 (1987) 287.

    Google Scholar 

  25. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner andR. H. Stolen,Appl. Phys. Lett. 47 (1985) 87.

    Google Scholar 

  26. R. H. Stolen andC. Lin,Phys. Rev. A17 (1978) 1448.

    Google Scholar 

  27. M. Kuckartz, R. Schulz andH. Harde, Proc. Conf. on Lasers and Electro-optics (CLEO), Optical Society of America, Baltimore (1987), Paper MH3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovchenko, E.A., Dianov, E.M., Mamyshev, P.V. et al. Optical fibre-grating pulse compression. Opt Quant Electron 20, 343–355 (1988). https://doi.org/10.1007/BF00620252

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620252

Keywords

Navigation