Skip to main content
Log in

Blocking of silicon oxidation by low-dose nitrogen implantation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The oxidation characteristics of silicon implanted with a low dose of nitrogen (1–3×1015cm−2) have been studied for dry oxidation conditions at 1020°C. The wafers were subjected to a pre-oxidation annealing. Complete inhibition of the oxide growth occurs in the initial stage of oxidation, while the oxidation rate for prolonged oxidation is identical to that for pure silicon. The oxidation resistance increases with the implantation dose. The resistance is attributed to the formation of a nitrogen-rich surface film during annealing. This layer, which consists of only a few monolayers, is presumably composed of oxynitride. The electrical characteristics of MOS capacitors formed on implanted wafers show that the interface state density is not significantly increased by the low-dose N implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J.M.J. Josquin: Nucl. Instr. Meth.209, 581 (1983)

    Google Scholar 

  2. T.Y. Chiu, H. Bernt, I. Ruge: U. Electrochem. Soc.131, 1934 (1982)

    Google Scholar 

  3. M.J. Kim, M. Ghezzo: J. Electrochem. Soc.131, 1934 (1984)

    Google Scholar 

  4. J. Hui, T.Y. Chiu, S. Wong, W.G. Oldham: IEEE EDL-2, 244 (1981)

    Google Scholar 

  5. M. Ramin, H. Ryssel, H. Kranz: Appl. Phys.22, 393 (1980)

    Google Scholar 

  6. J.R. Troxell, D.E. Moss: J. Electrochem. Soc.131, 2353 (1984)

    Google Scholar 

  7. W.J.M.J. Josquin, Y. Tamminga: J. Electrochem. Soc.129, 1803 (1982)

    Google Scholar 

  8. T.Y. Chiu, W.G. Oldham, C. Hovland: J. Electrochem. Soc.131, 2110 (1984)

    Google Scholar 

  9. R. Hezel, N. Lieske: J. Electrochem. Soc.129, 379 (1982)

    Google Scholar 

  10. C.R. Fritzsche, W. Rothemund: J. Electrochem. Soc.120, 1603 (1973)

    Google Scholar 

  11. M. Schulz, M. Klausmann: Appl. Phys.18, 196 (1979)

    Google Scholar 

  12. S.S. Wong, W.G. Oldham: IEEE Trans. ED-32, 978 (1985)

    Google Scholar 

  13. J. Nulman, J.P. Krusius: Appl. Phys. Lett.47, 148 (1985)

    Google Scholar 

  14. S.P. Murarka, C.C. Chang, A.C. Adams: J. Electrochem. Soc.126, 996 (1979)

    Google Scholar 

  15. C.Y. Wu, C.W. King, M.K. Lee, C.T. Chen, C.T. Shih: J. Electrochem. Soc.130, 458 (1983)

    Google Scholar 

  16. B.E. Deal, A.S. Grove: J. Appl. Phys.36, 3770 (1965)

    Google Scholar 

  17. S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin: J. Electrochem. Soc.123, 560 (1976)

    Google Scholar 

  18. J.B. Mitchel, J. Shewchun, D.A. Thompson, J.A. Davies: J. Appl. Phys.46, 335 (1975)

    Google Scholar 

  19. D.E. Davies, J.A. Adamski, E.F. Kennedy: Appl. Phys. Lett.48, 347 (1986)

    Google Scholar 

  20. C.T. Chen, F.C. Tseng, C.Y. Chang, M.K. Lee: J. Electrochem. Soc.131, 875 (1984)

    Google Scholar 

  21. Landolt-Börnstein III/17cSemiconductor Technology, ed. by M. Schulz, H. Weiss (Springer, Berlin, Heidelberg 1984) pp. 214 and 531

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schott, K., Hofmann, K.C. & Schulz, M. Blocking of silicon oxidation by low-dose nitrogen implantation. Appl. Phys. A 45, 73–76 (1988). https://doi.org/10.1007/BF00618766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618766

PACS

Navigation