Skip to main content
Log in

The paired electrochemical synthesis of sorbitol and gluconic acid in undivided flow cells. I

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The strategy of paired electrochemical synthesis for the production of organic chemicals, in which the reactions at both the anode and cathode simultaneously contribute to the formation of the final product(s), could result in as much as a 50% reduction in energy consumption as compared to conventional electro-organic syntheses. In order to evaluate this hypothesis the electrochemical oxidation of glucose to gluconic acid and the reduction of glucose to sorbitol were paired in undivided flow-through parallel plate and packed bed cells.

To date, the optimum electrode materials and operating conditions for the paired synthesis are: an amalgamated zinc cathode, a graphite anode, an initial glucose concentration of 0.8 mol dm−3, a 0.8 mol dm−3 NaBr supporting electrolyte, an electrolyte flow rate of 0.81 min−1 and an electrolyte pH of 7. Under these conditions the current efficiencies for sorbitol and gluconic acid were 26% and 68%, respectively at 0.25 F mole−1. Current losses are believed to be due to hydrogen evolution and the reduction ofδ-gluconolactone (an intermediate in the formation of gluconic acid) to glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Sanders and R. A. Hales,Trans. Electrochem. Soc. 96 (1949) 241.

    Google Scholar 

  2. M. Fedoronko,Adv. Carbohydr. Chem. Biochem. 29 (1947) 107.

    Google Scholar 

  3. A. Bin Kassim, PhD Thesis, University of Salford, England (1979).

    Google Scholar 

  4. H. Chum and R. A. Osteryoung, ‘Survey of the Electrochemistry of Some Biomass-Derived Compounds’, SERI Report No. TR 332417 (1981).

  5. S. M. Cantor and Q. P. Peniston,J. Amer. Chem. Soc. 62 (1940) 2113.

    Google Scholar 

  6. J. M. Los, L. B. Simpson and K. Wiesner,ibid. 75 (1953) 6346.

    Google Scholar 

  7. Idem, ibid. 78 (1956) 1564.

    Google Scholar 

  8. H. J. Creighton,Trans. Electrochem. Soc. 75 (1939) 289.

    Google Scholar 

  9. M. L. Wolfrom, K. Konigsberg, F. B. Moody and R. M. Goepp, Jr,J. Amer. Chem. Soc. 68 (1946) 122, 578.

    Google Scholar 

  10. E. A. Parker and S. Swann, Jr,Trans. Electrochem. Soc. 92 (1947) 343.

    Google Scholar 

  11. N. G. Belenkaya and N. A. Belozersky,Zh. Obshch. Khim. 19 (1949) 1664.

    Google Scholar 

  12. R. A. Hales, US Patent No. 2 300 218 (1942).

  13. A. Bin Kassim, C. L. Rice and A. T. Kuhn,J. Appl. Electrochem. 11 (1981) 261.

    Google Scholar 

  14. Idem, 77 (1981) 683.

    Google Scholar 

  15. H. S. Isbell and H. L. Frush,J. Res. Natl. Bur. Stand. 6 (1931) 1145.

    Google Scholar 

  16. H. S. Isbell, H. L. Frush and F. J. Bates,ibid. 8 (1932) 571.

    Google Scholar 

  17. C. G. Fink and D. B. Summers,Trans. Electrochem. Soc. 74 (1938) 625.

    Google Scholar 

  18. M. Ya. Fioshin and I. A. Avrutskaya,J. Appl. Chem. USSR 42 (1969) 2153, 2337.

    Google Scholar 

  19. F. Beck,Angew. Chem. Int. Ed. Eng. 11 (1972) 760.

    Google Scholar 

  20. Y. Pocker and E. Green,J. Amer. Chem. Soc. 95 (1973) 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pintauro, P.N., Johnson, D.K., Park, K. et al. The paired electrochemical synthesis of sorbitol and gluconic acid in undivided flow cells. I. J Appl Electrochem 14, 209–220 (1984). https://doi.org/10.1007/BF00618739

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618739

Keywords

Navigation