Skip to main content
Log in

Molecular beam epitaxy and reconstructed surfaces

Initial stages of interface formation in group IV–IV structures

  • Invited Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the last years molecular beam epitaxy (MBE) has become a very important method to create new materials. Scattering and channeling of high-energy ions is a mass-dispersive, surface-sensitive crystallographic technique, particularly suited for the investigation of epitaxial systems. The combination of both techniques allows new insight into some of the fundamental processes at interfaces and surfaces. As an example we discuss the influence of substrate reconstruction on epitaxial growth. We show for the Si/Ge and Si/Si systems that the reordering of the reconstruction-induced displacements at the substrate surface, a necessary condition for epitaxial growth, is critically dependent on the type of reconstruction: Deposition of Ge or Si on Si(100)2×1 at room-temperature relieves the reconstruction, whereas Si(111)7×7 appears unaffected. This difference is discussed in terms of structural models for these surfaces. We shall also discuss the implications of these results with respect to MBE and, in particular, to Si homoepitaxial temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ichikawa, S. Ino: Solid State Commun.27, 483 (1978); Surf. Sci.105, 395 (1981)

    Google Scholar 

  2. H.-J. Gossmann, J.C. Bean, L.C. Feldman, W.M. Gibson: Surf. Sci.138, L175 (1984)

    Google Scholar 

  3. H.-J. Gossmann, J.C. Bean, L.C. Feldman, E.G. McRae, I.K. Robinson: J. Vac. Sci. Technol. A3, 1633 (1985)

    Google Scholar 

  4. A.C. Gossard: InTreatise on Materials Science and Technology 24 (Academic, New York 1982)

    Google Scholar 

  5. G.G. Osbourn: J. Appl. Phys.53, 1586 (1982); Phys. Rev. B27, 5126 (1983)

    Google Scholar 

  6. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, I.K. Robinson: J. Vac. Sci. Technol. A2, 436 (1984)

    Google Scholar 

  7. W.C. Turkenburg, W. Soszka, F.W. Saris, H.H. Kertan, B.G. Colenbrander: Nucl. Instram. Methods132, 587 (1976)

    Google Scholar 

  8. W.K. Chu, J.W. Mayer, M.-A. Nicolet:Backscattering Spectrometry (Academic, New York 1978)

    Google Scholar 

  9. L.C. Feldman: CRC Crit. Rev. Solid State Mater. Sci.10, 143 (1981)

    Google Scholar 

  10. L.C. Feldman, J.W. Mayer, S.T. Picraux:Materials Analysis by Ion Channeling (Academic, New York 1982)

    Google Scholar 

  11. R.J. Culbertson, L.C. Feldman, P.J. Silverman: Phys. Rev. Lett.45, 2043 (1980)

    Google Scholar 

  12. L.C. Feldman, P.J. Silverman, I. Stensgaard: Nucl. Instrum. Methods168, 589 (1980)

    Google Scholar 

  13. H.-J. Gossmann, L.C. Feldman: Phys. Rev. B32, 6 (1985)

    Google Scholar 

  14. P. Chen, D. Bolmont, C.A. Sebenne: Solid State Commun,46, 689 (1983)

    Google Scholar 

  15. M.P. Seah: Surf. Sci.32, 703 (1972)

    Google Scholar 

  16. M.P. Seah, W.A. Dench: Surf. Interf. Anal.1, 2 (1979)

    Google Scholar 

  17. H.-J. Gossmann, L.C. Feldman: Surf. Sci.155, 413 (1985)

    Google Scholar 

  18. F.C. Frank, J.H. van der Merwe: Proc. Roy. Soc. London A198, 216 (1949)

    Google Scholar 

  19. J.H. van der Merwe: J. Appl. Phys.34, 123 (1963)

    Google Scholar 

  20. H.-J. Gossmann: Ph. D. Thesis, State University of New York at Albany, Albany, NY (1984)

    Google Scholar 

  21. S. Nannarone, F. Patella, P. Perfetti, C. Quaresima, A. Savoia, C.M. Bertoni, C. Calandra, F. Manghi: Solid State Commun.34, 409 (1980)

    Google Scholar 

  22. D.J. Chadi: Phys. Rev. Lett.43, 43 (1979)

    Google Scholar 

  23. R.E. Schlier, H.F. Farnsworth: J. Chem. Phys.30, 917 (1959)

    Google Scholar 

  24. J.A. Appelbaum, D.R. Hamann: Surf. Sci.74, 21 (1978)

    Google Scholar 

  25. E.G. McRae: Surf. Sci.124, 106 (1983)

    Google Scholar 

  26. E.G. McRae: Phys. Rev. B28, 2305 (1983)

    Google Scholar 

  27. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. Lett.50, 120 (1983)

    Google Scholar 

  28. Y.J. Chabal: Phys. Rev. Lett.50, 1850 (1983)

    Google Scholar 

  29. W.K. Burton, N. Cabrera, F.C. Frank: Philos. Trans. Roy. Soc. (London) A243, 299 (1951)

    Google Scholar 

  30. E. Kasper: Appl. Phys. A28, 129 (1982)

    Google Scholar 

  31. Y.J. Chabal, J.E. Rowe, S.B. Christman: Phys. Rev. B24, 3303 (1981)

    Google Scholar 

  32. F. Jona: InProc. 13th Sagamore Army Materials Research Conf., ed. by J.J. Burke, N.L. Reed, and V. Weiss (Syracuse University Press, Syracuse, NY 1967)

    Google Scholar 

  33. T. de Jong, W.R.S. Douma, L. Smit, V.V. Korablen, F.W. Saris: J. Vac. Sci. Technol. B1, 888 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gossmann, H.J., Feldman, L.C. Molecular beam epitaxy and reconstructed surfaces. Appl. Phys. A 38, 171–179 (1985). https://doi.org/10.1007/BF00616494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616494

PACS

Navigation