Skip to main content
Log in

Blackening in yttria stabilized zirconia due to cathodic processes at solid platinum electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The DC cathodic voltage current density (V-J) characteristics at the contact between a solid disc Pt-13% Rh electrode and yttria stabilized zirconia (YZr) electrolyte were investigated to evaluate the conditions under which blackening occurred in the anionic conductor. Polycrystalline and single crystal samples have been studied using oxygen-argon mixtures between 100 and 10−3 atm oxygen and at temperatures in the range 800 to 1450°C. It is shown that the rate determining step of the overall cathodic reaction, O2(g)+2Vö+4e′ar2O xo under low field, ohmic conditions is the first electronation step, but true activation polarization at higher fields is masked by mass transfer limitations. The limiting current density in the polycrystalline material was directly proportional to the oxygen partial pressure\(\left( {J_L \propto P_{O_2 } } \right)\) whereas at low temperatures, below 1000°C,\(J_L \propto P_{O_2 }^{\tfrac{1}{2}} \) in the single crystal.

The former behaviour is attributed to a flux limit in the ambient oxygen gas, whereas the\(J_L \propto P_{O_2 }^{\tfrac{1}{2}} \) regime is believed to be a consequence of molecular dissociation, coupled with surface exchange, onto the mobile interfacial layer. It is further shown that blackening is a consequence of thermionic emission of electrons across the cathodic interface into anion vacancy traps and the cathodicV-J characteristics of the blackened material saturate to obey aJV 2 law above about 2 V, indicative of a space charge limited current. A tentative model is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Weininger and P. D. Zemany,J. Chem. Phys.,22 (1954) 1469.

    Google Scholar 

  2. M. Jacquinet al., C.R. Acad. Sci., Paris,264 (1967) 2101.

    Google Scholar 

  3. T. H. Etsell and S. N. Flengas,J. Electrochem. Soc.,118 (1971) 1890.

    Google Scholar 

  4. R. J. Brook, W. L. Pelzmann and F. A. Kroger,J. Electrochem. Soc.,118 (1971) 185.

    Google Scholar 

  5. M. V. Perfilev and S. F. Palguev,Electrochemistry of Molten & Solid Electrolytes,4 (1967) 147.

    Google Scholar 

  6. J. E. Bauerle,J. Phys. Chem. Solids,30 (1969) 2657.

    Google Scholar 

  7. S. V. Karpachev and Y. M. Ovchinnikov,Sov. Electrochem.,5 (1969) 181.

    Google Scholar 

  8. M. Kleitz, Thesis, Grenoble University (1968).

  9. H. Yanagida, R. J. Brook and F. A. Kroger,J. Electrochem. Soc.,117 (1970) 593.

    Google Scholar 

  10. C. S. Tedmon, H. S. Spacil and S. P. Mitoff,J. Electrochem. Soc.,116 (1969) 1170.

    Google Scholar 

  11. Y. P. Gokhshstein and A. A. Safonov,High Temp.,8 (1970) 368.

    Google Scholar 

  12. R. E. W. Casselton, ‘Electricity from MHD’IAEA Vienna,5 (1968) 2951.

    Google Scholar 

  13. R. E. W. Casselton,Phys. Stat. Sol. (a),2 (1970) 571.

    Google Scholar 

  14. R. E. W. Casselton and M. D. S. Watson,Sci. Ceram.,4 (1968) 349.

    Google Scholar 

  15. R. E. W. Casselton, Thesis, University of London (1971).

  16. K. J. Vetter, ‘Electrochemical Kinetics’, Academic Press, New York (1967).

    Google Scholar 

  17. L. R. Velho and R. W. Bartlett,Met. Trans.,3 (1972) 65.

    Google Scholar 

  18. L. A. Simpson and R. E. Carter,J. Amer. Ceram. Soc.,49 (1966) 139.

    Google Scholar 

  19. G. C. Fryburg, and H. M. Petrus,J. Electrochem. Soc.,108 (1961) 496.

    Google Scholar 

  20. C. A. Krier and R. I. Jaffee,J. Less Comm. Metals,5 (1963) 411.

    Google Scholar 

  21. J. Fusyet al., J. Chim. Phys.,65 (1968) 1192.

    Google Scholar 

  22. T. Smith,J. Electrochem. Soc.,112 (1965) 560.

    Google Scholar 

  23. J. O.'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Macdonald, Vol. 2 (1970).

  24. M. Gideoni and M. Steinberg,J. Sol. State Chem.,4 (1972) 370.

    Google Scholar 

  25. R. L. Nelson, J. W. Hale and B. J. Harmsworth,Trans. Faraday Soc.,67 (1971) 1164.

    Google Scholar 

  26. D. Inman, Proceedings of a Symposium on ‘Electromotive Force Measurements in High Temperature Systems’,Inst. Mining Metall. (1968) 163.

  27. H. S. Carslaw and J. C. Jaeger, ‘Conduction of Heat in Solids’, O.U.P., 2nd Edition (1959) 192.

  28. Janaf Thermochemical Data, U.S. Dept. Comm., (1965).

  29. S. V. Karpachev and A. T. Filyaev,Electrochem.,2 (1966) 1330.

    Google Scholar 

  30. D. A. Wright, J. S. Thorp, A. Aypar and H. P. Buckley,J. Mater. Sci.,8 (1973) 876.

    Google Scholar 

  31. A. B. Lidiard, ‘Handbuch der Physik’, Springer Verlag,20 (1957) 319.

    Google Scholar 

  32. J. G. Simmons,J. Phys. D.,4 (1971) 613.

    Google Scholar 

  33. J. R. MacDonald,J. Chem. Phys.,22 (1954) 1217.

    Google Scholar 

  34. J. S. Thorp, Private communication.

  35. Smithsonian Physical Tables, NBS (1959).

  36. G. Cardon,Physica,27 (1961) 841.

    Google Scholar 

  37. J. L. Hartke,Phys. Rev.,125 (1962) 1177.

    Google Scholar 

  38. A. Rose,Phys. Rev.,97 (1955) 1538.

    Google Scholar 

  39. M. A. Lampert,Phys. Rev.,103 (1956) 1648.

    Google Scholar 

  40. R. E. W. Casselton, J. S. Thorp and D. A. Wright,Proc. Brit. Ceram. Soc.,19 (1971) 265.

    Google Scholar 

  41. W. Jakubowski and D. H. Whitmore,J. Amer. Ceram. Soc.,54 (1971) 161.

    Google Scholar 

  42. R. E. W. Casselton, J. Penney and M. J. Reynolds,Trans. and J. Brit. Ceram. Soc.,70 (1971) 115.

    Google Scholar 

  43. J. S. Thorp, A. Aypar and J. S. Ross,J. Mater. Sci.,7 (1972) 729.

    Google Scholar 

  44. A. Wilcockson and R. E. W. Casselton,J. Amer. Ceram. Soc.,53 (1970) 293.

    Google Scholar 

  45. R. C. Carter and W. L. Roth, in reference (26) p. 125.

  46. F. A. Kroger,J. Electrochem. Soc.,120 (1973) 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casselton, R.E.W. Blackening in yttria stabilized zirconia due to cathodic processes at solid platinum electrodes. J Appl Electrochem 4, 25–48 (1974). https://doi.org/10.1007/BF00615903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615903

Keywords

Navigation