Skip to main content
Log in

Formation of monoclinic zirconia at the anodic face of tetragonal zirconia polycrystalline solid electrolytes

  • Solid-state Ionics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The stability of yttria tetragonal zirconia polycrystalline (Y-TZP) materials with and without the addition of alumina has been investigated during charge flow in solid electrolyte cells. A considerable amount of monoclinic zirconia is formed (up to 50–60%) on the anodic side of the solid electrolyte discs during current flow. The thickness of the surface layer in which maximum transformation takes place was determined to be 3–4.5 μm. On the cathodic side, the amount of monoclinic zirconia detected was relatively small (< 5%). The amount of monoclinic formed on the anodic side varied with the microstructure of the ceramic and was considerably less in materials free of pores and with uniform grain size distribution. Relaxation experiments indicate that the tetragonal to monoclinic zirconia phase transformation is related to the oxygen evolution reaction and is not due to oxygenion transport within the solid electrolyte. The observed behaviour has been explained in terms of the creation of space charge layers at the electrode/electrolyte interface leading to the saturation of vacancies by oxygen ions and instability of the tetragonal phase in the surface region on the anodic side of the solid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tsukuma, K. Ueda, M. Shimada: J. Am. Ceram. Soc.68, C-4 (1985)

    Google Scholar 

  2. M. Rühle, N. Claussen, A.H. Heuer: Adv. Ceram.12, 352 (1984)

    Google Scholar 

  3. S. Rajendran, M.V. Swain, H.J. Rossell: J. Mater. Sci.23, 1805 (1988)

    Google Scholar 

  4. S.P.S. Bawal, M.V. Swain: J. Mater. Sci. Lett.4, 487 (1985)

    Google Scholar 

  5. T. Sato, S. Ohtaki, M. Shimada: J. Mater. Sci.20, 1466 (1985)

    Google Scholar 

  6. K. Kobayashi, H. Kuwajima, T. Masaki: Solid State Ionics3/4, 489 (1981)

    Google Scholar 

  7. H.-Y. Lu, S.-Y. Chen: J. Am. Ceram. Soc.70, 537 (1987)

    Google Scholar 

  8. T. Sato, M. Shimada: J. Am. Ceram. Soc.68, 356 (1985)

    Google Scholar 

  9. M. Watanabe, S. Iio, K. Kuroda, H. Saka, T. Imura: Proc.'87 Intl. Symp. and Exhibition on Science and Technology of Sintering, Tokyo, Japan (1987)

  10. K. Nakajima, K. Kobayashi, T. Murata: Adv. Ceram.12, 399 (1984)

    Google Scholar 

  11. T. Tsukuma, Y. Kubota, T. Tsukidate: Adv. Ceram.12, 382 (1984)

    Google Scholar 

  12. M. Watanabe, S. Iio, I. Fakuura: Adv. Ceram.12, 391 (1984)

    Google Scholar 

  13. F.F. Lange, G.L. Dunlop, B.I. Davis: J. Am. Ceram. Soc.69, 237 (1986)

    Google Scholar 

  14. S.P.S. Badwal, J. Drennan: J. Mater. Sci.24, 88 (1989)

    Google Scholar 

  15. R.C. Garvie, P.S. Nicholson: J. Am. Ceram. Soc.55, 303 (1972)

    Google Scholar 

  16. R.C. Garvie, R.H.J. Hannink, M.V. Swain: J. Mater. Sci. Lett.1, 437 (1982)

    Google Scholar 

  17. R. Chaim, D.G. Brandon, A.H. Heuer: Acta Metall.34, 1933 (1986)

    Google Scholar 

  18. H. Yangida, R.J. Brook, F.A. Kroger: J. Electrochem. Soc.117, 593 (1970)

    Google Scholar 

  19. F.K. Moghadem, T. Yamashita, D.A. Stevenson: J. Mater. Sci.18, 2255 (1983)

    Google Scholar 

  20. T. Sato, M. Shimada: J. Am. Ceram. Soc.67, C212 (1984)

    Google Scholar 

  21. T. Sato, M. Shimada: “Special Ceramics,” British Ceramics Proceedings No. 37, 1986 (Institute of Ceramics, Shelton U.K.) p. 151

    Google Scholar 

  22. N. Narita, S. Leng, T. Inada, K. Higashida: Proc.'87 Intl. Symp. and Exhibition on Science and Technology of Sintering, Tokyo, Japan (1987)

  23. N. Yoshimura, T. Noma, K. Kuwabata: J. Mater. Sci. Lett.6, 465 (1987)

    Google Scholar 

  24. H.J. de Bruin, S.P.S. Badwal: J. Aust. Ceram. Soc.14, 20 (1978)

    Google Scholar 

  25. F.F. Lange: J. Mater. Sci.17, 240 (1982)

    Google Scholar 

  26. H.G. Scott: J. Mater. Sci.10, 1527 (1974)

    Google Scholar 

  27. R. Ruh, K.S. Mazdiyasni, P.G. Valentine, H.O. Bielstein: J. Am. Ceram. Soc.67, C190 (1984)

    Google Scholar 

  28. V.S. Stubican, R.C. Hink, S.P. Ray: J. Am. Ceram. Soc.61, 17 (1978)

    Google Scholar 

  29. S.P.S. Badwal: J. Mater. Sci. Lett.6, 1419 (1987)

    Google Scholar 

  30. T. Kuwabara, T. Murakami, M. Ashizuka, Y. Kubota, T. Tsukidate: J. Mater. Sci. Lett.4, 467 (1985)

    Google Scholar 

  31. F.F. Lange: J. Am. Ceram. Soc.69, 240 (1986)

    Google Scholar 

  32. M. Matsui, T. Soma, I. Oda: Adv. Ceram.12, 371 (1984)

    Google Scholar 

  33. R. Chaim, A.H. Heuer, D.G. Brandon: J. Am. Ceram. Soc.69, 243 (1986)

    Google Scholar 

  34. J. Drennan, E.P. Butler: Sci. Ceram.12, 267 (1983)

    Google Scholar 

  35. J. Drennan, S.P.S. Badwal: Adv. Ceram.24, Science and Technology of Zirconia III (The Am. Ceram. Soc., Westervill Ohio) (in press)

  36. H. Schubert: J. Am. Ceram. Soc.69, 270 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badwal, S.P.S., Nardella, N. Formation of monoclinic zirconia at the anodic face of tetragonal zirconia polycrystalline solid electrolytes. Appl. Phys. A 49, 13–24 (1989). https://doi.org/10.1007/BF00615460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615460

PACS

Navigation