Skip to main content
Log in

Kinetics of the polycrystalline iron electrode in dilute acid and neutral aqueous electrolytes under complex fast potentiodynamic perturbations

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The potentiodynamic response of the polycrystalline Fe electrode in aqueous electrolytes containing K2SO4 (2⩽pH⩽7) under fast perturbation conditions is investigated. When the conditions are properly adjusted, film-forming species and an oxide phase are detected. The results obtained by the application of the triangularly modulated triangular potential sweep (TMTPS) technique show the degree of reversibility of the various anodic and cathodic processes related to the electrodissolution of iron. The experimental response can be interpreted through a complex reaction model involving electrochemical reactions and ageing processes. The model contains, as particular cases, most of the mechanisms proposed earlier for the dissolution of iron in aqueous solution. The electrochemical interface is conceived as dynamic, deprotonation and dehydration processes playing an important role during the Fe electro-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fisher,Werkstoffe u. Korros. 29 (1978) 188.

    Google Scholar 

  2. Idem, Z. Phys. Chem. 260 (1979) 93.

    Google Scholar 

  3. Idem, ibid 260 (1979) 121.

    Google Scholar 

  4. D. B. Gibbs and M. Cohen,J. Electrochem. Soc. 119 (1972) 416.

    Google Scholar 

  5. N. Sato and T. Notoya,Denki Kagaku 35 (1967) 100.

    Google Scholar 

  6. T. Noda, K. Kudo and N. Sato,J. Japan Inst. Metals 37 (1973) 951.

    Google Scholar 

  7. R. Nishimura, K. Kudo and N. Sato,Surf. Sci. 96 (1980) 413.

    Google Scholar 

  8. B. S. Pak, W. Paik and I. H. Yeo,J. Korean Chem. Soc. 22 (1978) 365.

    Google Scholar 

  9. A. G. Akimov, N. P. Andreeva and I. L. Rozenfeld,Elektrokhim. 15 (1979) 1888.

    Google Scholar 

  10. J. R. Vilche and W. J. Lorenz,Corros. Sci. 12 (1972) 785.

    Google Scholar 

  11. J. Bessone, L. Karakaya, P. Lorbeer and W. J. Lorenz,Electrochim. Acta 22 (1977) 1147.

    Google Scholar 

  12. H. Schweickert, W. J. Lorenz and H. Friedburg,J. Electrochem. Soc. 127 (1980) 1693.

    Google Scholar 

  13. K. Ogura and H. Wada,Electrochim. Acta 25 (1980) 913.

    Google Scholar 

  14. J. V. Dobson, T. Dickinson and P. R. Snodin,J. Electroanal. Chem. 88 (1978) 363.

    Google Scholar 

  15. S. Sklarska-Smialowska and G. Mrowczynski,Brit. Corros. J. 10 (1975) 187.

    Google Scholar 

  16. J. M. Lecuire,J. Electroanal. Chem. 66 (1975) 195.

    Google Scholar 

  17. K. E. Heusler,Z. Elektrochem. 62 (1958) 582.

    Google Scholar 

  18. J. O'M. Bockris, D. Drazic and A. R. Despic,Electrochem. Acta 4 (1961) 325.

    Google Scholar 

  19. J. J. Podestá and A. J. Arvía,ibid 10 (1965) 171.

    Google Scholar 

  20. E. J. Kelly,J. Electrochem. Soc. 115 (1968) 1111.

    Google Scholar 

  21. F. Hilbert, Y. Miyoshi, G. Eichkorn and W. J. Lorenz,ibid 118 (1971) 1919.

    Google Scholar 

  22. I. Epelboin, C. Gabrielli, M. Keddam and H. Takenouti,Electrochim. Acta 20 (1975) 913.

    Google Scholar 

  23. G. Pinard-Legry and G. Plante,Mater. Chem. 1 (1976) 321.

    Google Scholar 

  24. G. Bech-Nielsen,Electrochim. Acta 21 (1976) 627.

    Google Scholar 

  25. J. R. Vilche and A. J. Arvía,Anal. Acad. Cs. Ex. Fis. Nat. Buenos Aires, in press.

  26. R. S. Schrebler Guzmán, J. R. Vilche and A. J. Arvía,Electrochim. Acta (in press).

  27. J. R. Vilche and A. J. Arvía,Proc. 7th Int. Congr. Met. Corros., Rio de Janeiro (1978) p.245 (publ. 1979).

  28. R. S. Schrebler Guzmń, J. R. Vilche and A. J. Arvía,J. Appl. Electrochem. 11 (1981) 000.

    Google Scholar 

  29. B. E. Conway, H. Angerstein-Kozlowska, F. C. Ho, J. Klinger, B. MacDougall and S. Gottesfeld,Faraday Disc. Chem. Soc. 56 (1973) 210.

    Google Scholar 

  30. R. S. Schrebler Guzmán, J. R. Vilche and A. J. Arvía,J. Appl. Electrochem. 9 (1979) 321.

    Google Scholar 

  31. R. N. O'Brien and K. V. N. Rao,J. Electrochem. Soc. 112 (1965) 1245.

    Google Scholar 

  32. T. R. Jayaraman, V. K. Venkatesan and H. V. K. Udupa,Electrochim. Acta 20 (1975) 209.

    Google Scholar 

  33. M. Cohen, D. Mitchell and K. Hashimoto,J. Electrochem. Soc. 126 (1979) 442.

    Google Scholar 

  34. J. R. Vilche and A. J. Arvía,Acta Cient. Venezuela, in press.

  35. N. R. Tacconi, J. O. Zerbino and A. J. Arvía,J. Electroanal. Chem. 79 (1977) 287.

    Google Scholar 

  36. J. O. Zerbino, N. R. Tacconi, A. Calandra and A. J. Arvía,J. Electrochem. Soc. 124 (1977) 475.

    Google Scholar 

  37. R. V. Moshtev,Electrochim. Acta 15 (1970) 657.

    Google Scholar 

  38. F. M. Delnick and N. Hackerman, in ‘Passivity of Metals’ (edited by R. P. Frankenthal and J. Kruger) The Electrochemical Society, Princeton (1978) p. 116.

    Google Scholar 

  39. N. Sata, K. Kudo and R. Nishimura,J. Electrochem. Soc. 123 (1976) 1419.

    Google Scholar 

  40. J. L. Ord and D. J. DeSmet,ibid 123 (1976) 1876.

    Google Scholar 

  41. T. Tsuru and S. Haruyama,Corros. Sci. 16 (1976) 623.

    Google Scholar 

  42. F. C. Ho and J. L. Ord,J. Electrochem Soc. 119 (1972) 139.

    Google Scholar 

  43. F. Zucchi, G. Brunoro, G. Trabanelli and M. Zucchini,Surf. Techol 4 (1976) 497.

    Google Scholar 

  44. F. M. Delnick and N. Hackerman,J. Electrochem. Soc. 126 (1979) 732.

    Google Scholar 

  45. M. Froelicher, M. Maja and P. Spinelli,31st ISE Meeting, Venice (1980) p. 804.

  46. V. A. Macagno, J. R. Vilche and A. J. Arvía,J. Appl. Electrochem. 11 (1981) 417.

    Google Scholar 

  47. P. Lorbeer and W. J. Lorenz,Electrochim. Acta 25 (1980) 375.

    Google Scholar 

  48. A. Hickling,Electrochim. Acta 18 (1973) 635.

    Google Scholar 

  49. K. Ogura,J. Electroanal. Chem. 79 (1977) 149.

    Google Scholar 

  50. K. Ogura and T. Majima,Electrochim. Acta 23 (1978) 1361.

    Google Scholar 

  51. K. Ogura and H. Wada,ibid 25 (1980) 913.

    Google Scholar 

  52. P. D. Allen, N. A. Hampson and G. J. Bignold,J. Electroanal. Chem. 99 (1979) 299.

    Google Scholar 

  53. Idem, Ibid 111 (1980) 223.

    Google Scholar 

  54. J. M. Lecuire,Analysis 2 (1973) 489.

    Google Scholar 

  55. Idem, ibid 2 (1973) 495.

    Google Scholar 

  56. J. M. Lecuire and O. Evrard,J. Electroanal. Chem. 78 (1977) 331.

    Google Scholar 

  57. J. M. Lecuire and Y. Pillet,ibid 91 (1978) 99.

    Google Scholar 

  58. M. Nagayama and M. Cohen,J. Electrochem. Soc. 110 (1963) 670.

    Google Scholar 

  59. N. Sato and M. Cohen,ibid 111 (1963) 624.

    Google Scholar 

  60. M. Nagayama and M. Cohen,ibid 109 (1962) 781.

    Google Scholar 

  61. V. Markovac and M. Cohen,ibid 114 (1967) 674.

    Google Scholar 

  62. N. Sato, K. Kudo and T. Noda,Corros. Sci. 10 (1970) 785.

    Google Scholar 

  63. N. Sato, T. Noda and K. Kudo,Electrochim. Acta 19 (1974) 471.

    Google Scholar 

  64. T. Misawa, K. Hashimoto and S. Shimodaira,Corros. Sci. 14 (1974) 131.

    Google Scholar 

  65. M. Seo, N. Sato, J. B. Lumsden and R. W. Staehle,ibid 17 (1977) 209.

    Google Scholar 

  66. J. Kruger and J. P. Calvert,J. Electrochem. Soc. 114 (1967) 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerbino, J.O., Vilche, J.R. & Arvía, A.J. Kinetics of the polycrystalline iron electrode in dilute acid and neutral aqueous electrolytes under complex fast potentiodynamic perturbations. J Appl Electrochem 11, 703–713 (1981). https://doi.org/10.1007/BF00615174

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615174

Keywords

Navigation