Skip to main content
Log in

The thermogravitational effect in porous media: A modelling approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The thermogravitational effect may induce large concentration contrasts, particularly in porous media. This phenomenon arises from a coupling of the Soret effect and convection currents in a temperature field. The present study of this phenomenon is motivated by the safety assessment of nuclear waste repositories, which are sources of thermal energy. Here, we present a modelling approach of laboratory experiments carried out at the University of Toulouse. The results of this model, though more adequate than the analytical solution to account for the influence of permeability, remain far from the experimental ones. In conclusion, it appears that the research must now focus on both a comprehensive phenomenology of the transport processes and experiments with new dimensional constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

concentration of the solute

c :

mass fraction of the solute

D :

molecular diffusion coefficient

D′:

coefficient of thermodiffusion

F 1 :

external forces on the solute

F 2 :

external forces on the solvent

g :

gravity

J q :

heat flux

J l :

solute mass flux

J x :

horizontal mass flux of the solute

k :

intrinsic permeability

k L :

longitudinal permeability

k T :

transverse permeability

T 0 :

reference temperature

U :

Darcy velocity

Β :

thermal expansion coefficient of the mixture

λ :

thermal conductivity

ε :

porosity of the medium

η :

dynamic viscosity of the mixture

η 0T :

dynamic viscosity of pure water atT

η 1T :

dynamic viscosity of 1 atT

η 2T :

dynamic viscosity of 2 atT

Μ 1 :

chemical potential of the solute

Μ 2 :

chemical potential of the solvent

ρ :

specific mass of the fluid

ρ 0 :

specific mass of pure water atT 0

References

  • Benet, J. C., 1983, Non-équilibre thermodynamique dans les milieux poreux non saturés avec changement de phase,Int. J. Heat Mass Transfer 26, 1585–1595.

    Google Scholar 

  • Bierlein, J. A., 1954, A phenomenological theory of the Soret diffusion,J. Chem. Phys. 23(1), 10–15.

    Google Scholar 

  • Costesèque, P., 1982, Sur la migration sélective des isotopes et des éléments par la thermodiffusion dans les solutions. Applications de l'effet thermogravitationnel en milieu poreux. Observations expérimentales et conséquences géochimiques, Doctoral thesis, Université Paul Sabatier, Toulouse.

    Google Scholar 

  • Costesèque, P., Fargue, D., and Jamet, Ph., 1990, Etude phénoménologique et expérimentale de la thermodiffusion en milieu poreux. Application à la thermogravitation, EMP Technical Report, LHM/RD/90/45.

  • De Groot, S. R., 1942, Théorie phénoménologique de l'effet Soret,Physica 9(7), 699–708.

    Google Scholar 

  • De Groot, S. R. and Mazur, P., 1961,Non-Equilibrium Thermodynamics, North-Holland, Amsterdam.

    Google Scholar 

  • El Maâtaoui, M., 1986, Conséquences de la thermodiffusion en milieu poreux sur l'hydrolyse des solutions de chlorures ferriques et sur les migrations d'hydrocarbures dans des mélanges de n-alcanes et dans un pétrole brut: implications géochimiques, PhD thesis, Université Paul Sabatier, Toulouse.

    Google Scholar 

  • Fargue, D., Goblet, P., and Jamet, Ph., 1990, Etude sous l'angle thermodynamique des processus de transfert non-dominants des radionucléides dans la géosphère, MIRAGE European Program, EUR report 12672 FR.

  • Fer, F., 1971,Thermodynamique macroscopique: Systèmes ouverts, Gordon and Breach.

  • Furry, W. H., Jones, R. C., and Onsager, L., 1939, On the theory of isotope separation by thermal diffusion,Phys. Rev. 55, 1083–1095.

    Google Scholar 

  • Goblet, P., 1989, Programme METIS, simulation d'écoulement et de transport miscible en milieu poreux et fracturé, EMP Technical Report LHM/RD/89/23.

  • Groenevelt, P. H. and Bolt, G. H., 1969, Non-equilibrium thermodynamics of the soil-water system,J. Hydrol. 7, 358–388.

    Google Scholar 

  • Hassanizadeh, S. M., 1986, Derivation of basic equations of mass transport in porous media, 1. Macroscopic Balance Laws,Adv. Water Res. 9, 196–206.

    Google Scholar 

  • Hassanizadeh, S. M., 1989, Derivation of basic equations of mass transport in porous media, 2. Generalized Darcy's and Fick's laws,Adv. Water Res. 24, 321–330.

    Google Scholar 

  • Jamet, Ph., 1991, Sur certains aspects du couplage en milieux poreux entre les champs de température et de concentration, Doctoral thesis, Ecole Nationale Supérieure des Mines de Paris.

  • Jones, R. C. and Furry, W. H., 1946, The separation of isotopes by thermal diffusion,Rev. Mod. Phys. 18, 151–224.

    Google Scholar 

  • Lorenz, M. and Emery, A. H., 1958, The packed thermal diffusion column,Chem. Eng. Sci. 11, 16–23.

    Google Scholar 

  • Meixner, J. and Reik, H. G., 1959, Thermodynamik der irreversiblen Prozesse,Handbuch der Physik,III(2), Springer, Heidelberg, pp. 412–523.

    Google Scholar 

  • Prigogine, I., 1947,Etude thermodynamique des phénomènes irréversibles, Dunod et Desoer, Paris.

    Google Scholar 

  • Schott, J., 1973, Contribution à l'étude de la thermodiffusion dans les milieux poreux. Application aux possibilités de concentration naturelles, Doctoral thesis, Université Paul Sabatier, Toulouse.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamet, P., Fargue, D., Costesèque, P. et al. The thermogravitational effect in porous media: A modelling approach. Transp Porous Med 9, 223–240 (1992). https://doi.org/10.1007/BF00611968

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611968

Key words

Navigation