Skip to main content
Log in

Adipose tissue blood flow during prolonged, heavy exercise

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Subcutaneous adipose tissue blood flow (ATBF) was examined in 8 subjects during 6 h exercise on a bicycle ergometer. The initial work load was 118 W corresponding to about 50% of maximal work capacity. The oxygen uptake increased from 0.26 l ·min−1 at rest to about 1.6l·min−1 during work. In 7 subjects ATBF increased, in 1 it remained constant. After 3 h exercise ATBF at an average reached values 3–4 times the control value. This increase was maintained for the remaining work periods. The increase was significant at the 5% level. Plasma free fatty acids increased 7-, plasma glycerol 10-fold during work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åstrand, I.: Aerobic work capacity in men and women with special reference to age. Acta physiol. scand.49, suppl. 169, 85 (1960)

    Google Scholar 

  2. Åstrand, P.-O., Rodahl, K.: Textbook of work physiology, pp. 455–488, New York: McGraw-Hill Book Comp. 1970

    Google Scholar 

  3. Bergmayer, H. V., Bernt, E.: Bestimmung mit Glukose-Oxydase und Peroxydase. In: Methoden der enzymatischen Analyse (H. V. Bergmayer, ed.), pp. 1172–1181. Weinheim: Verlag Chemie 1970

    Google Scholar 

  4. Bülow, J., Madsen, J.: Compensation for geometrical changes during monitoring of133Xe-washout from subcutaneous adipose tissue. Scand. J. clin. Lab. Invest.35, 641–644 (1975)

    Google Scholar 

  5. Christensen, E. H., Hansen, O.: Arbeitsfähigkeit und Ernährung. Skand. Arch. Physiol.81, 160 (1939)

    Google Scholar 

  6. Galbo, H., Holst, H. H., Christensen, N. J.: Glucagon and plasma catecholamine response to graded and prolonged exercise in man. J. appl. Physiol.38, 70–76 (1975)

    Google Scholar 

  7. Häggendal, J., Hartley, L. H., Saltin, B.: Arterial noradrenaline concentration during exercise in relation to relative work levels. Scand. J. clin. Lab. Invest.26, 337–342 (1970)

    Google Scholar 

  8. Häggendal, E., Steen, B., Svanberg, A.: Measurement of blood flow through human abdominal subcutaneous fat tissue by local injection of radioactive Xenon (preliminary report). Acta med. scand.181, 215–217 (1967)

    Google Scholar 

  9. Hartley, L. H., Mason, J. W., Hogan, R. P., Jones, L. G., Kotchen, T. A., Mongey, E. H., Wherry, F. E., Pennington, L. L., Ricketts, P. T.: Multiple hormonal responses to graded exercise in relation to physical training. J. appl. Physiol.33, 602–606 (1972)

    Google Scholar 

  10. Herd, J. A., Goodman, H. M., Grose, S. A.: Blood flow rates through adipose tissues of unanesthetized rats. Amer. J. Physiol.214, 263–268 (1968)

    Google Scholar 

  11. Hjemdahl, P., Fredholm, B. B.: Comparison of the lipolytic activity of circulating and locally released noradrenaline during acidosis. Acta physiol. scand.92, 1–11 (1974)

    Google Scholar 

  12. Hoffbrand, B. I., Forsyth, R. P.: Regional blood flow changes during norepinephrine, tyramine and methoxamine infusions in the unanesthetized rhesus monkey. J. Pharmacol. exp. Ther.184, 656–661 (1973)

    Google Scholar 

  13. Hohurst, H. J.: Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analysen (H. V. Bergmayer, ed.), pp. 1422–1425. Weinheim: Verlag Chemie 1970

    Google Scholar 

  14. Larsen, O. A., Lassen, N. A., Quaade, F.: Blood flow through human adipose tissue determined with radioactive Xenon. Acta Physiol. scand.66, 337 (1966)

    Google Scholar 

  15. Laurell, S. L., Tibbling, G.: An enzymatic fluorometric micromethod for the determination of glycerol. Clin. chim. acta13, 317–322 (1966)

    Google Scholar 

  16. Laurell, S., Tibbling, G.: Colorimetric microdetermination of free fatty acids in plasma. Clin. chim. Acta16, 57–62 (1967)

    Google Scholar 

  17. Lewis, G. P., Matthews, J.: The mechanism of functional vasodilation in rabbit epigastric adipose tissue. J. Physiol. (Lond.)207, 15–30 (1970)

    Google Scholar 

  18. Mjös, O. D., Akre, S.: Effect of catecholamines on blood flow, oxygen consumption, and release/uptake of free fatty acids in adipose tissue. Scand. J. clin. Lab. Invest.27, 221–225 (1971)

    Google Scholar 

  19. Nielsen, S. L., Bitsch, V., Larsen, O. A., Lassen, N. A., Quaade, F.: Blood flow through human adipose tissue during lipolysis. Scand. J. clin. Lab. Invest.22, 124–130 (1968)

    Google Scholar 

  20. Scholander, P. F.: Analysis for accurare estimation of respiratory gasses in one half cubic centimeter samples. J. biol. Chem.167, 235 (1947)

    Google Scholar 

  21. Steinberg, D., Vaughan, M.: In: Handbook of Physiology, section 5, Adipose tissue (A. E. Renold & G. F. Cahill, Jr., eds.), p. 344. Baltimore: Williams & Wilkins 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bülow, J., Madsen, J. Adipose tissue blood flow during prolonged, heavy exercise. Pflugers Arch. 363, 231–234 (1976). https://doi.org/10.1007/BF00594606

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00594606

Key words

Navigation