Skip to main content
Log in

Comparative force-frequency relationships in human and other mammalian ventricular myocardium

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Contractile responses to increased stimulation frequency were analyzed in isolated papillary and ventricular muscle bundles from human, guinea pig and rat hearts. Contractile tension and velocity of tension development and release were recorded while changes in frequency were made. The following were calculated for each frequency; duration of the phases of accelerating (I) and decelerating (II) contraction, and accelerating (III) and decelerating (IV) relaxation; tension at end of phases I, II and III; and instantaneous velocities at the midpoint of phase I, and at the end of phases I and III. Increasing frequency was accompanied by decreased contractile tension and velocities to a limit in rat and markedly hypertrophied adult human myocardium; but by increased contractile tension and velocities to a limit in guinea pig, late fetal human, and minimally hypertrophied adult human myocardium. The observations support the hypothesis that peak contractile tension development depends on phase I velocity and phase II duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, B. C., Mommaerts, W. F. H. M.: A study of inotropic mechanisms in the papillary muscle preparation. J. gen. Physiol.42, 533–551 (1959).

    Google Scholar 

  2. Blesa, E. S., Langer, G. A., Brady, A. J., Serena, S. D.: Potassium exchange in rat ventricular myocardium: its relation to rate of stimulation. Amer. J. Physiol.219, 747–754 (1970).

    Google Scholar 

  3. Bravený, P., Šumbera, J.: Electromechanical correlations in mammalian heart muscle. Pflügers Arch.319, 36–48 (1970).

    Google Scholar 

  4. Doherty, J. E., Flanagan, W. J.: Tritiated digoxin XIV: Enterohepatic circulation, absorption and excretion studies in human volunteers. Circulation42, 867–874 (1970).

    Google Scholar 

  5. Dowlatshahi, K., Hunt, A. C.: Electron microscopical findings in hypertrophied human ventricle. Brit. Heart J.31, 200–205 (1969).

    Google Scholar 

  6. Dresel, P. E., Ellett, R. W., Schluter, L.: Effect of pentobarbital on isometric contraction and parameters of active state in cat papillary muscle. Life Sci.9, 759–764 (1970).

    Google Scholar 

  7. Dudel, J., Trautwein, W.: Elektrophysiologische Messungen zur Strophantinwirkung am Herzmuskel. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.232, 393–407 (1958).

    Google Scholar 

  8. Edman, K. A. P., Nilsson, E.: The dynamics of the inotropic change produced by altered pacing of rabbit papillary muscle. Acta physiol. scand.76, 236–247 (1969).

    Google Scholar 

  9. Gennser, G., Nilsson, E.: Relationship between action potential and active state in human fetal myocardium and its dependence on muscle length and contraction frequency. Acta physiol. scand.73, 42–53 (1968).

    Google Scholar 

  10. Goldberg, A. H., Ullrick, W. C.: Effects of halothane on isometric contraction of isolated heart muscle. Anesthesiology28, 838–845 (1967).

    Google Scholar 

  11. Henderson, A. M., Brutsaert, D. L., Parmley, W. W., Sonnenblick, E. H.: Myocardial mechanics in papillary muscles of rat and cat. Amer. J. Physiol.217, 1273–1279 (1969).

    Google Scholar 

  12. Hoffman, B. F., Kelly, J. J., Jr.: Effects of rate and rhythm on contraction of rat papillary muscle. Amer. J. Physiol.197, 1199–1204 (1959).

    Google Scholar 

  13. Kaufmann, R. L., Homburger, H., Wirth, H.: Disorder in excitation-contraction coupling of cardiac muscle from cats with experimentally produced right ventricular hypertrophy. Circulat. Res.28, 346–357 (1971).

    Google Scholar 

  14. Koch-Weser, J.: Effect of rate change on strength and time course of contraction of papillary muscle. Amer. J. Physiol.204, 451–457 (1963).

    Google Scholar 

  15. —, Blinks, J. R.: Analysis of the relationship of positive inotropic action of cardiac glycosides to frequency of contraction of heart muscle. J. Pharmacol. exp. Ther.136, 305–317 (1962).

    Google Scholar 

  16. Langer, G. A.: Calcium exchange in dog ventricular muscle: relation to frequency of contraction and maintenance of contractility. Circulat. Res.17, 78–89 (1965).

    Google Scholar 

  17. —: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev.48, 708–757 (1968).

    Google Scholar 

  18. Meessen, H.: Morphologische Grundlagen der akuten und der chronischen Myokardinsuffizienz. Verh. dtsch. Ges. Path.51, 31–65 (1967).

    Google Scholar 

  19. Naylor, W. G.: Some factors involved in the maintenance and regulation of cardiac contractility. Circulat. Res. 21, Suppl. III, 213–221 (1967).

    Google Scholar 

  20. Penefsky, Z. J.: Effects of hypothermia and stretch on contraction and relaxation of cardiac muscle. Amer. J. Physiol.214, 730–736 (1968).

    Google Scholar 

  21. —: Model active state in cardiac muscle: A study of the first derivative of isometric tension. In: Experiments in Physiology. Ed. by F. Kao, K. Koizumi, and M. Vassalle. Bologna: Aulo Gaggi 1971.

    Google Scholar 

  22. —, Hoffman, B. F.: Effects of stretch on mechanical and electrical properties of cardiac muscle. Amer. J. Physiol.204, 433–438 (1963).

    Google Scholar 

  23. —, Kahn, M.: Mechanical and electrical effects of ryanodine on mammalian heart muscle. Amer. J. Physiol.218, 1682–1686 (1970).

    Google Scholar 

  24. Penna, M., Boye, A., Novaković, L.: Effect of halothane on contractile function and reactivity of myocardium. Europ. J. Pharmacol.10, 151–160 (1970).

    Google Scholar 

  25. Reiter, M.: Der Einfluß der Natrium-Ionen auf die Beziehung zwischen Frequenz und Kraft der Kontraktion des isolierten Meerschweinchenmyokards. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.254, 261–286 (1966).

    Google Scholar 

  26. Reuter, H., Seitz, N.: Dependence of calcium efflux from cardiac muscle on temperature and external ion concentration. J. Physiol. (Lond.)195, 451–470 (1969).

    Google Scholar 

  27. Siegel, S.: Non Parametric Statistics, pp. 116–126. New York: McGraw-Hill 1956.

    Google Scholar 

  28. Sonnenblick, E. H., Braunwald, E., Morrow, A. G.: Contraction properties of human heart muscle: studies on myocardial mechanics of surgically excised papillary muscle. J. clin. Invest.44, 966–977 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, N.M., Penefsky, Z.J. & Litwak, R.S. Comparative force-frequency relationships in human and other mammalian ventricular myocardium. Pflugers Arch. 332, 259–270 (1972). https://doi.org/10.1007/BF00588574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588574

Key words

Navigation