Skip to main content
Log in

The effect of stepwise arterial hypotension on blood flow and oxidative metabolism of the brain

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

With the Kety-Schmidt-technique in ten dogs anaesthetized with 0.5% halothane, blood flow and oxidative metabolism of the brain were studied during stepwise lowering of CPP due to arterial hypotension at 71 and 41 torr. CBF remained constant (65.6 and 64.1 ml/100 g min) when CPP dropped from 98 to 71 torr, but at a CPP of 41 torr CBF fell to 32.2 ml/100 g min, i. e. to about 50% of the resting value. The CMR-oxygen did not change (4.20 and 4.38 ml/100 g min) when CPP was reduced from about 100 to about 70 torr, but decreased to 2.90 ml/100 g min, i. e. about 70% of the resting value in deep arterial hypotension.

The uptake of glucose changed from 4.62 to 6.19 mg/100 g min as well as the output of CO2 and lactate (from 4.64 to 6.57 ml/100 g min and from 0.33 to 1.62 mg/100 g min) when CPP was decreased to 71 torr. It could be demonstrated that at this CPP range the oxidative metabolism was unchanged. It was assumed that the increased uptake of glucose was only to form lactate, and that this non-hypoxic lactate production was responsible for the elevated CO2 release. At a CPP range of 41 torr the metabolic rates of glucose and CO2 decreased to 3.33 mg/100 g min and to 3.37 ml/100 g min, respectively, while the output of lactate remained relatively high (1.14 mg/100 g min). These findings support the assumption that at a CPP range of 41 torr the oxidative metabolism of the brain becomes insufficient. All findings demonstrate close interactions between cerebral flow blood and oxidative brain metabolism in arterial hypotension. In deep arterial hypotension respiratory acidosis has an effect on CBF. The increase of CBF is accompanied by an improvement of CMR-oxygen but not of CMR-glucose. Although CMR-lactate is reduced, the lactate/glucose index remains high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernsmeier, A.: Durchblutung des Gehirns. In: M. Monnier: Physiologie und Pathophysiologie des vegetativen Nervensystems, Bd. II, S. 607. Stuttgart: Hippokrates 1963

    Google Scholar 

  2. Bernsmeier, A., Siemons, K.: Der Hirnkreislauf bei der gesteuerten experimentellen Hypotension (Hypotension controlée). Schweiz. med. Wschr.83, 210–212 (1953)

    Google Scholar 

  3. Bernsmeier, A., Siemons, K.: Die Messung der Hirndurchblutung mit der Stickoxydul-Methode. Pflügers Arch. ges. Physiol.258, 149–162 (1953)

    Google Scholar 

  4. Carlyle, A., Grayson, J.: Blood pressure and the regulation of brain blood flow. J. Physiol. (Lond.)127, 15–16P (1955)

    Google Scholar 

  5. Cowley, A. W., Jr., Liard, J. F., Guyton, A. C.: Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circulat. Res.32, 564–576 (1973)

    Google Scholar 

  6. Finnerty, F. A., Witkin, L., Fazekas, J. F.: Cerebral hemodynamics during cerebral ischemia induced by acute hypotension. J. clin. Invest.33, 1227–1232 (1954)

    Google Scholar 

  7. Eklöf, B., MacMillan, V., Siesjö, B. K.: Cerebral energy state and cerebral venouspO2 in experimental hypotension caused by bleeding. Acta physiol. scand.86, 515–527 (1972)

    Google Scholar 

  8. Fog, M.: Om piaarteriernes vasomotoriske reaktioner (Diss. med.), Copenhagen 1934 in N. A. Lassen. Circulat. Res.15, Suppl. I, 201–204 (1964)

    Google Scholar 

  9. Fog, M.: Autoregulation of cerebral blood flow and its abolition by local hypoxia and/or trauma. Scand. J. clin. Lab. Invest., Suppl.102, V:B (1968)

  10. Fujishima, M.: The metabolic mechanism of cerebral blood flow autoregulation in dogs. Jap. Heart J.12, 376–382 (1971)

    Google Scholar 

  11. Gibbs, E. L., Lennox, W. G., Nims, L. F., Gibbs, F. A.: Arterial and cerebral venous blood. Arterial-venous differences in man. J. biol. Chem.144, 325–332 (1942)

    Google Scholar 

  12. Gottstein, U., Bernsmeier, A., Sedlmeyer, I.: Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin. Wschr.41, 943–948 (1963)

    Google Scholar 

  13. Gottstein, U., Müller, W., Berghoff, W., Gärtner, H., Held, K.: Zur Utilisation von nicht-veresterten Fettsäuren und Ketonkörpern im Gehirn des Menschen. Klin. Wschr.49, 406–411 (1971)

    Google Scholar 

  14. Häggendal, E.: Blood flow autoregulation of the cerebral grey matter with comments on its mechanism. Acta neurol. scand., Suppl.14, 104–110 (1965)

    Google Scholar 

  15. Häggendal, E., Johansson, B.: Effects of arterial carbon dioxide tensions and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta physiol. scand.66, Suppl. 258, 27–53 (1965)

    Google Scholar 

  16. Häggendal, E., Löfgren, J., Nilsson, N. J., Zwetnow, N. N.: Effects of varied cerebrospinal fluid pressure on cerebral blood flow in dogs. Acta physiol. scand.79, 262–271 (1970)

    Google Scholar 

  17. Harper, A. M.: The inter-relationship betweenapCO2 and blood pressure in the regulation of blood flow through the cerebral cortex. Acta neurol. scand., Suppl.14, 94–103 (1965)

    Google Scholar 

  18. Harper, A. M.: Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J. Neurol. Neurosurg. Psychiat.29, 398–403 (1966)

    Google Scholar 

  19. Hoyer, S., Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin. Wschr.48, 1239–1243 (1970)

    Google Scholar 

  20. Hoyer, S., Weinhardt, F.: Cerebral blood flow and cerebral metabolism with regard to cerebral amino acid and fatty acid metabolism in the so-called arteriosclerotic dementia. In: J. S. Meyer, H. Lechner, M. Reivich and O. Eichhorn (Eds.): Cerebral Vascular Disease, pp. 218–221. VI. Int. Conf., Salzburg 1972. Stuttgart: Thieme 1973

    Google Scholar 

  21. Kaasik, A. E., Nilsson, L., Siesjö, B. K.: The effect of arterial hypotension upon the lactate, pyruvate and bicarbonate concentration of the brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats. Acta physiol. scand.78, 448–458 (1970)

    Google Scholar 

  22. Kety, S. S., Schmidt, C. F.: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. clin. Invest.27, 476–483 (1948)

    Google Scholar 

  23. Kirchheim, H., Gross, R.: Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog. Pflügers Arch.327, 203–224 (1971)

    Google Scholar 

  24. Kirchheim, H., Gross, R., Keintzel, B.: Dynamic pressure-flow curves in the autoregulating kidney vasculature of conscious dogs. Pflügers Arch.335, 29–45 (1972)

    Google Scholar 

  25. Lassen, N. A.: Cerebral blood flow and oxygen consumption in man. Physiol. Rev.39, 183–238 (1959)

    Google Scholar 

  26. Miller, J. D., Stanek, A., Langfitt, T. W.: Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. Progr. Brain Res.35, 411–432 (1972)

    Google Scholar 

  27. Morris, G. C., jr., Moyer, J. H., Snyder, H. B., Hayner, B. W.: Vascular dynain controlled hypotension. Ann. Surg.138, 706–711 (1953)

    Google Scholar 

  28. Moyer, J. H., Morris, G., Smith, C. P.: Cerebral hemodynamics during controlled hypotension induced by the continuous infusion of ganglionic blocking agents. J. clin. Invest.33, 1081–1088 (1954)

    Google Scholar 

  29. O'Rourke, R. A., Bishop, V. S.: Cardiovascular hemodynamics in the conscious dog. Amer. Heart. J.81, 55–60 (1971)

    Google Scholar 

  30. Rapela, C. E., Green, H. D.: Autoregulation of canine cerebral blood flow. Circulat. Res.15, Suppl. I, 205–211 (1964)

    Google Scholar 

  31. Siesjö, B. K., Nilsson, L., Rokeach, M., Zwetnow, N. N.: Energy metabolism of the brain at reduced cerebral perfusion pressures and in arterial hypoxaemia. In: J. B. Brierley and B. S. Meldrum (Eds.): Brain Hypoxia, pp. 79–93. Spastic Int. Med. Publ. London: W. Heinemann Med. Books Ltd. 1971

    Google Scholar 

  32. Siesjö, B. K., Zwetnow, N. N.: The effect of hypovolemic hypotension on extra-and intracellular acid-base parameters and energy metabolism in the rat brain. Acta physiol. scand.79, 114–124 (1970)

    Google Scholar 

  33. Weinhardt, F., Quadbeck, G., Hoyer, S.: Quantitative Bestimmung von Blutgasvolumina mit Hilfe der Gaschromatographie. Z. prakt. Anästh.6, 337–347 (1972)

    Google Scholar 

  34. Wüllenweber, R., Gött, U., Szántó, J.: Beobachtungen zur Regulation der Hirndurchblutung. Acta neurochir. (Wien)16, 137–153 (1967)

    Google Scholar 

  35. Zwetnow, N. N.: The influence of an increased intracranial pressure on the lactate, pyruvate, bicarbonate, phosphocreatine, ATP, ADP and AMP concentrations of the cerebral cortex of dogs. Acta physiol. scand.79, 158–166 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyer, S., Hamer, J., Alberti, E. et al. The effect of stepwise arterial hypotension on blood flow and oxidative metabolism of the brain. Pflugers Arch. 351, 161–172 (1974). https://doi.org/10.1007/BF00587434

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587434

Key words

Navigation