Skip to main content
Log in

Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Basal-lateral plasma membrane vesicles and brush border membrane vesicles were isolated from rat kidney cortex and the uptake of p-amino-hippuric acid (PAH) into these vesicles was studied by Millipore filtration techniques.

Both membrane preparations take up PAH into an osmotically reactive intravesicular space. The transport across the brush border membrane seems to involve only simple diffusion whereas in the basal-lateral plasma membrane in addition a specific transport system exists which is inhibited competitively by probenecid. The apparent affinity of this transport system for PAH is 5.4×10−4 M and for probenecid 5.4×10−5 M.

PAH uptake into basal-lateral plasma membrane vésicles is influenced by alteration of the membrane potential. Maneuvers which render the intravesicular space more positive-as for example replacement of chloride by sulfate in the presence of a sodium gradient directed into the vesicles and addition of valinomycin in the presence of a potassium gradient directed into the vesicles-stimulate the uptake of PAH. Replacement of a sodium chloride gradient by a sodium thiocyanate gradient reduces the uptake probably by reducing the inside positive membrane potential.

In the absence of salt gradients anion replacement and replacement of sodium by potassium does not affect PAH transport by basal-lateral plasma membranes.

These results suggest that in isolated basal-lateral membranes transfer of PAH across the membrane is accompanied by a transfer of negative charge. They furthermore provide no evidence for the existence of a sodium-PAH cotransport system in this membrane preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyer, K. H.: Functional characteristics of renal transport mechanism. Pharmacol. Rev.2, 227–280 (1950)

    Google Scholar 

  2. Burg, M. B., Orloff, J.: Effect of strophanthidin on electrolyte content and PAH accumulation of rabbit kidney slices. Amer. J. Physiol.202, 565–571 (1962)

    Google Scholar 

  3. Dayton, P. G., Yü, T. F., Chen, W., Berger, L., West, L. A., Gutman, A. B.: The physiological disposition of probenecid, including renal clearance, in man, studied by an improved method for its estimation in biological material. J. Pharmacol. exp. Ther.140, 278–286 (1963)

    Google Scholar 

  4. Deetjen, P., Sonnenberg, H.: Der tubuläre Transport von p-Aminohippursäure. Mikroperfusionsversuche am Einzelnephron der Rattenniere in situ. Pflügers Arch. ges. Physiol.285, 35–44 (1965)

    Google Scholar 

  5. Dixon, M., Webb, E. C.: Enzymes. Second edition. London: Longmans, Green and Co. Ltd. 1964

    Google Scholar 

  6. Ecker, J. L., Hook, J. B.: Analysis of factors influencing the in vitro developmental pattern of p-aminohippurate transport by rabbit kidney. Biochim. biophys. Acta (Amst.)339, 210–217 (1974)

    Google Scholar 

  7. Farah, A., Frazer, M., Stoffel, M.: Studies on the runout of p-aminohippurate from renal slices. J. Pharmacol. exp. Ther.139, 120–128 (1963)

    Google Scholar 

  8. Forster, R. P.: Renal transport mechanisms. Fed. Proc.26, 1008–1019 (1967)

    Google Scholar 

  9. Forster, R. P., Copenhaver, J. H., Jr.: Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Amer. J. Physiol.186, 167–171 (1956)

    Google Scholar 

  10. Frömter, E.: Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. MTP International review of science. In: Kidney and urinary tract physiology, vol. 6, K. Thurau, eds., pp. 1–38. London: Butterworth, and Baltimore: University Park Press, 1974

    Google Scholar 

  11. Heidrich, H. G., Kinne, R., Kinne-Saffran, E., Hannig, K.: The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush border microvilli and plasma membranes from the basal infoldings. J. Cell Biol.54, 232–245 (1972)

    Google Scholar 

  12. Henderson, P. J. F., McGivan, J. D., Chappell, J. B.: The action of certain antibioties on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem. J.111, 521–535 (1969)

    Google Scholar 

  13. Hoffmann, N., Kinne, R.: Phosphate transport by isolated renal brush border vesicles. Pflügers Arch. (in press, 1976)

  14. Kinter, W. B.: Chlorophenol red influx and efflux: microspectrophotometry of flounder kidney tubules. Amer. J. Physiol.211, 1152–1164 (1966)

    Google Scholar 

  15. Kinter, W. B., Cline, A. L.: Exchange diffusion and runout of Diodrast I131 from renal tissue in vitro. Amer. J. Physiol.201, 309–317 (1961)

    Google Scholar 

  16. Kirsch, R., Fleischner, G., Kamisaka, K., Arias, I. M.: Structural and functional studies of ligandin, a major renal organic anion-binding protein. J. clin. Invest.55, 1009–1019 (1975)

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  18. May, D. G., Weiner, I. M.: Bidirectional active transport of m-hydroxybenzoate in proximal tubules of dogs. Amer. J. Physiol.218, 430–436 (1970)

    Google Scholar 

  19. Park, Y. S., Yoo, H. S., Hong, S. K.: Kinetic studies on transport of organic acids in rabbit kidney slices. Amer. J. Physiol.220, 95–99 (1971)

    Google Scholar 

  20. Pressman, B. C.: Ionophorous antibiotics as models for biological transport. Fed. Proc.27, 1283–1288 (1968)

    Google Scholar 

  21. Ross, C. R., Farah, A.: p-Aminohippurate and N-methylnicotinamide transport in dog renal slices—an evaluation of the counter-transport hypothesis. J. Pharmacol. exp. Ther.151, 159–167 (1966)

    Google Scholar 

  22. Schoner, W., von Ilberg, C., Kramer, R., Seubert, W.: On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Europ. J. Biochem.1, 334–343 (1967)

    Google Scholar 

  23. Tanner, G. A., Kinter, W. B.: Reabsorption and secretion of p-aminohippurate and Diodrast in Necturus kidney. Amer. J. Physiol.210, 221–231 (1966)

    Google Scholar 

  24. Tune, B. M., Burg, M. B., Patlak, C. S.: Characteristics of p-aminohippurate transport in proximal renal tubules. Amer. J. Physiol.217, 1057–1063 (1969)

    Google Scholar 

  25. Vogel, G., Kroger, W.: Das TmPAH der Niere als Na+-abhängiger Größe. Pflügers Arch. ges. Physiol.286, 317–322 (1965)

    Google Scholar 

  26. Vogel, G., Kroger, W.: Die Bedeutung des Transports, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch. ges. Physiol.288, 342–358 (1966)

    Google Scholar 

  27. Weiner, I. M., Washington, II, J. A., Mudge, G. H.: On the mechanism of action of probenecid on renal tubular secretion. Bull. Johns Hopk. Hosp.106, 333–346 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of these data have been presented on the Spring Meeting of the German Physiological Society in Bochum, 1975 [Pflügers Arch., Suppl.355, 99 (1975)].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berner, W., Kinne, R. Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflugers Arch. 361, 269–277 (1976). https://doi.org/10.1007/BF00587292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587292

Key words

Navigation