Skip to main content
Log in

Shift of threshold temperature for shivering and heat polypnea as a mode of thermal adaptation

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Newborn guinea pigs were divided into three groups and kept for several weeks at one of the following environmental conditions: 1. 28°C, WA-animals; 2. 3°C, CA-animals; 3. 12 hrs daily at 3°C, 12 hrs at 28°C, CWA-animals. At the age of 4–7 weeks threshold temperatures were determined for shivering (electrical muscle activity) and heat polypnea, and the maximum amount of nonshivering thermogenesis was measured using the noradrenaline test. In the CA-animals both shivering and heat polypnea threshold were found to be decreased in comparison with WA-animals by about 1°C; for these studies the animals were placed and immobilized in a climatized respiratory chamber. In another series of studies, in which the animals were unrestrained, the mean colon temperature of CA-animals was about 0.5°–1°C lower than in WA-animals when exposed to ambient temperatures of 22.5 and 30°C for 24 and 2 hrs, respectively. At 15°C ambient temperature there was a similar but smaller temperature difference. Hence, both types of studies would indicate that the “set point” of the temperature control system was set to a lower level in CA-animals. In CWA-animals the shivering threshold was decreased as in CA-animals; the heat polypnea threshold, however, remained as high as in the WA-animals. This “widening of the interthreshold zone” in CWA-animals is shown to provide a more economical temperature regulation when the animals are subjected to fluctuating environmental conditions, as they are enabled to tolerate body temperature changes to some extent before they actuate their cold or heat defense mechanisms. With regard to the ability of NST (i.e. metabolic cold-adaptation) CWA-animals were not different from CA-animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brück, K., Gallmeier, H., Wünnenberg, W.: Einfluß der Temperatur des vorderen Hypothalamus auf die zitterfreie Thermogenese des Meerschweinchens. Pflügers Arch. ges. Physiol.294, R86 (1967).

    Google Scholar 

  2. — Wünnenberg, B.: The influence of ambient temperature in the process of replacement of non-shivering by shivering thermogeneses during postnatal development. Fed. Proc.25, 1332–1336 (1966).

    Google Scholar 

  3. — Wünnenberg, W.: Beziehung zwischen Thermogenese im „braunen” Fettgewebe, Temperatur im cervicalen Anteil des Vertebralkanals und Kältezittern. Pflügers Arch. ges. Physiol.290, 167–183 (1966).

    Google Scholar 

  4. ——: Die Steuerung des Kältezitterns beim Meerschweinchen. Pflügers Arch. ges. Physiol.293, 215–225 (1967).

    Google Scholar 

  5. ——: Eine kälteadaptative Modifikation: Senkung der Schwellentemperaturen für Kältezittern. Pflügers Arch. ges. Physiol.293, 226–235 (1967).

    Google Scholar 

  6. ——: Meshed control of two effector systems: Non-shivering and shivering thermogenesis. In: Physiological and behavioral temperature regulation, eds. J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, Ill.: Ch. C. Thomas 1970.

    Google Scholar 

  7. —— Zeisberger, E.: Comparison of cold-adaptive metabolic modifications in different species with special reference to the miniature pig. Fed. Proc.28, 1035–1040 (1969).

    Google Scholar 

  8. Brück, K., Wünnenberg, W., Ziehm, B.: Gegensinnige Verstellung der Temperaturschwellen für Kältezittern und Wärmepolypone als adaptative Modifikation bei intermittierender Kälte- und Wärmeexposition. Pflügers Arch.312, R120 (1969).

    Google Scholar 

  9. Cottle, W. H., Carlson, L. D.: Regulation of heat production in cold adapted rats. Proc. Soc. exp. Biol. (N. Y.)92, 845–849 (1956).

    Google Scholar 

  10. Eisenman, J. S.: Pyrogen-induced changes in the thermosensitivity of septal and preoptic neurons. Amer. J. Physiol.216, 330–334 (1969).

    Google Scholar 

  11. Gallmeier, H.: Einfluß der Temperatur des vorderen Hypothalamus auf die Thermogenese des Meerschweinchens. Inaug.-Diss., Marburg 1969.

  12. Hammel, H. T., Elsner, R. W., Le Messurier, D. H., Andersen, H. T., Milan, F. A.: Thermal and metabolic responses of the Austration aborigine exposed to moderate cold in summer. J. appl. Physiol.14, 605–615 (1959).

    Google Scholar 

  13. Hsieh, A. C. L., Carlson, L. D.: Role of adrenaline and noradrenaline in chemical regulation of heat production. Amer. J. Physiol.190, 243 (1957).

    Google Scholar 

  14. LeBlanc, J., Mount, L. E.: Effects of noradrenaline and adrenaline on oxygen consumption rate and arterial blood pressure in the newborn pig. Nature (Lond.)217, 77–78 (1968).

    Google Scholar 

  15. Murakami, N., Stolwijk, J. A. J., Hardy, J. D.: Responses of preoptic neurons to anesthetics and peripheral stimulation. Amer. J. Physiol.213, 1015–1024 (1967).

    Google Scholar 

  16. Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A., Houpt, T. R.: Body temperature of the camel and its relation to water economy. Amer. J. Physiol.188, 103–112 (1957).

    Google Scholar 

  17. Wünnenberg, W., Brück, K.: Single unit activity evoked by thermal stimulation of the cervical spinal cord in the guinea pig. Nature (Lond.)218, 1268–1269 (1968).

    Google Scholar 

  18. Zeisberger, E., Brück, K.: Quantitative Beziehung zwischen Noradrenalin-effekt und Ausmaß der zitterfreien Thermogenese beim Meerschweinchen. Pflügers Arch. ges. Physiol.296, 263–275 (1967).

    Google Scholar 

  19. ——: Effect of intrahypothalamic noradrenaline-injection on the control of thermogenesis. Pflügers Arch.312, R119 (1969).

    Google Scholar 

  20. Zeisberger, E., Brück, K.: Central effects of noradrenaline on the control of body temperature in the guinea pig. Pflügers Arch. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The studies were supported by the Deutsche Forschungsgemeinschaft (Br 184/10).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brück, K., Wünnenberg, W., Gallmeier, H. et al. Shift of threshold temperature for shivering and heat polypnea as a mode of thermal adaptation. Pflugers Arch. 321, 159–172 (1970). https://doi.org/10.1007/BF00586370

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586370

Key Words

Schlüsselwörter

Navigation