Skip to main content
Log in

Iontophoretic and autoradiographic studies on the role of proline in nervous transmission

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Iontophoretic experiments with the aid of multibarreled micropipettes demonstrate a reversible depressant effect ofl-proline on the spontaneous discharge of Purkinje cells in the cat cerebellar cortex. The failure of a specific interaction with strychnine and bicuculline leads to the conclusion that proline acts neither on receptors for “glycine-like” nor on receptors for “GABA-like” amino acids. Autoradiographic investigations reveal a differential distribution of radioactivity after injection of3H-leucine and3H-proline into the cerebellar cortex. After leucine injection, high grain density can be observed over Stellate, Basket, Golgi and especially Purkinje cells. In contrast after application of3H-proline, the silver grains are concentrated primarily in the tissue adjacent to the Purkinje cells, mainly in the supraganglionic region and between these faintly labelled cerebellar cells. These results suggest the possibility that proline is involved in inhibitory neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, J. P., jr., Logan, W. J., Snyder, S. H.: Amino acid neurotransmitter candidates—sodium dependent high affinity uptake by unique synaptosomal fractions. Science178, 997–999 (1972)

    Google Scholar 

  2. Cohen, S. R., Lajtha, A.: Amino acid transport. In: Handbook of Neurochemistry, vol. VII, pp. 543–572, Lajtha, A., ed. New York-London: Plenum Press 1972

    Google Scholar 

  3. Csanyi, V., Gervai, J., Lajtha, A.: Axoplasmic transport of free amino acids. Brain Res.56, 271–284 (1973)

    Google Scholar 

  4. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R.: GABA, bicuculline and central inhibition. Nature (Lond.)226, 1222–1224 (1970)

    Google Scholar 

  5. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R.: Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res.32, 69–96 (1971)

    Google Scholar 

  6. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., McLennan, H.: Antagonism between bicuculline and GABA in the cat. Brain Res.33, 57–73 (1971).

    Google Scholar 

  7. Curtis, D. R., Hösli, L., Johnston, G. A. R.: A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exp. Brain Res.6, 1–18 (1968)

    Google Scholar 

  8. Ehinger, B.: Cellular localization of the uptake of some amino acids into the rabbit retina. Brain Res.46, 297–311 (1972)

    Google Scholar 

  9. Ehinger, B.: Glial uptake of taurine in the rabbit retina. Brain Res.60, 512–516 (1973)

    Google Scholar 

  10. Evans, P. D.: Amino acid distribution in the nervous system of the crab, Carcinus maenas (L.) J. Neurochem.21, 11–17 (1973)

    Google Scholar 

  11. Fox, C. A., Snider, R. S.: The cerebellum. Progr. Brain Res., vol. 25. Amsterdam: Elsevier 1967

    Google Scholar 

  12. Garweg, G.: Einbauunterschiede in den Zellschichten des Cortex nach Markierung mitD,l-Prolin-H3 bei der Maus. Experientia (Basel)26, 1348–1349 (1970)

    Google Scholar 

  13. Garweg, G., Schneider, E. J.: Regionale Inkorporation der optischen Isomeren der Aminosäure Prolin-H3 im Autoradiogramm des Mäusegehirns. Experientia (Basel)27, 377–378 (1971)

    Google Scholar 

  14. Gilles, R., Schoffeniels, E.: Fixation de14CO2 par les acides aminés de la chaine nerveuse ventrale du crustacé Humarus vulgaris M. Edw. Arch. int. Physiol. Biochim.76, 441–451 (1968)

    Google Scholar 

  15. Goodchild, M., Neal, M. J.: The uptake of3H-γ-aminobutyric acid by the retina. Brit. J. Pharmacol.47, 529–542 (1973)

    Google Scholar 

  16. Granit, R., Phillips, C. G.: Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. (Lond.)133, 520–547 (1956)

    Google Scholar 

  17. Hemminki, K., Hemminki, E., Giacobini, E.: Activity of enzymes related to neurotransmission in neuronal and glial fractions. Int. J. Neurosci.5, 87–94 (1973)

    Google Scholar 

  18. Henn, F. A., Hamberger, A.: Glial cell function: Uptake of transmitter substances. Proc. nat. Acad. Sci. (Wash.)68, 2686–2690 (1971)

    Google Scholar 

  19. Hökfelt, T., Ljungdahl, A.: Application of cytochemical technique to the study of suspect transmitter substances in the nervous system. In: Adv. in Biochem. Psychopharmacology, vol. 6, pp. 1–36, E. Costa, L. L. Iversen, and R. Paoletti, Eds.. New York: Raven Press 1972

    Google Scholar 

  20. Hökfelt, T., Ljungdahl, A.: Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labelled gamma-aminobutyric acid (3H-GABA). Exp. Brain Res.14, 354–362 (1972)

    Google Scholar 

  21. Kawamura, H., Provini, L.: Depression of cerebellar Purkinje cells by micro-iontophoretic application of GABA and related amino acids. Brain Res.24, 293–304 (1970)

    Google Scholar 

  22. Kelly, J. S., Renaud, L. P.: On the pharmacology of the gamma-aminobutyric acid receptors on the cuneo-thalamic relay cells of the cat. Brit. J. Pharmacol.48, 369–386 (1973)

    Google Scholar 

  23. Künzle, H., Cuénod, M.: Differential uptake of3H-proline and3H-leucine by neurons: Its importance for the autoradiographic tracing of pathways. Brain Res.62, 213–217 (1973)

    Google Scholar 

  24. Neal, M. J., Iversen, L. L.: Autoradiographic localization of3H-GABA in rat retina. Nature New Biol.235, 217–218 (1972)

    Google Scholar 

  25. Peters, T., Ashley, A.: An artefact in radioautography due to binding of free amino acids to tissues by fixatives. J. Cell Biol.33, 53–60 (1967)

    Google Scholar 

  26. Peterson, N. A., Raghupathy, E.: Characteristics of amino-acid accumulation by synaptosomal particles isolated from rat brain. J. Neurochem.19, 1423–1438 (1972)

    Google Scholar 

  27. Roberts, P. J., Keen P., Mitchell, J. F.: The distribution and axonal transport of free amino acids and related compounds in dorsal sensory neuron of the rat, as determined by the dansyl reaction. J. Neurochem.21, 199–210 (1973)

    Google Scholar 

  28. Siggins, G. R., Oliver, A. P., Hoffer, B. L., Bloom, F. E.: Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science171, 192–194 (1971)

    Google Scholar 

  29. Unger, H., Seefeldt, U., Seefeldt, D.: Respiratory frequency and neural activity of rabbits following intracisternal and intravenous administration of proline. Acta biol. med. germ.26, 323–330 (1971)

    Google Scholar 

  30. Van Harrefeld, A.: Proline as an antagonist to glutamate action. Fed. Proc.32, 429 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Swiss National Foundation for Scientific Research Nrs. 3.823.72, 3.774.72, 3.822.72 and the Dr. Eric Slack-Gyr Foundation, Zürich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felix, D., Künzle, H. Iontophoretic and autoradiographic studies on the role of proline in nervous transmission. Pflugers Arch. 350, 135–144 (1974). https://doi.org/10.1007/BF00586233

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586233

Key words

Navigation