Skip to main content
Log in

Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Active transport potentials were studied across early loops of rat proximal tubule during luminal perfusion and peritubular superfusion with HCO3-Ringer's solution of identical ionic composition. From the effects of the carbonic anhydrase inhibitor acetazolamide and of ouabain it is concluded 1. that the lumenpositive active transport potential indicates an excess of active H+ secretion/HCO3 absorption over active Na+ absorption and 2. that the lumen-negative active transport potential, which develops in the presence of glucose (and/or aminoacids) in the tubular lumen, indicates stimulation of active Na+ absorption. Ouabain did not abolish the lumen-positive potential difference suggesting that active H+/HCO3 transport and active Na+ transport may be to some extent independent. Among the diuretics tested the mercurial diuretic mersalyl acted primarily on Na+ transport, and furosemide acted on HCO3 transport, whereas the effect of ethacrynic acid appeared to be unspecific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, J. E., Beyer, K. H.: Renal pharmacology. Ann. Rev. Pharmacol.6, 261–292 (1966)

    Google Scholar 

  2. Barry, R. J. C., Dikstein, S., Mathews, J., Smyth, D. H., Wright, E. M.: Electrical potentials associated with intestinal sugar transfer. J. Physiol. (Lond.)171, 316–338 (1964)

    Google Scholar 

  3. Bode, F., Baumann, K., Frasch, W., Kinne, R.: Die Bindung von Phlorizin an die Bürstensaumfraktion der Rattenniere. Pflügers Arch.315, 53–65 (1970)

    Google Scholar 

  4. Brenner, B. M., Keimowitz, R. I., Wright, F. S., Berliner, R. W.: An inhibitory effect of furosemide on sodium reabsorption by the proximal tubule of the rat nephron. J. clin. Invest.48, 290–300 (1969)

    Google Scholar 

  5. Burg, M., Stoner, L., Cardinal, J., Green N.: Furosemide effect on isolated perfused tubules. Amer. J. Physiol.225, 119–124 (1973)

    Google Scholar 

  6. Candia, O. A.: Short-circuit current related to active transport of chloride in frog corena: effects of furosemide and ethacrynic acid. Biochim. biophys. Acta (Amst.)298, 1011–1014 (1973)

    Google Scholar 

  7. Clapp, J. R., Nottebohm, G. A., Robinson, R. R.: Proximal site of action of ethacrynic acid: importance of filtration rate. Amer. J. Physiol.220, 1355–1360 (1971)

    Google Scholar 

  8. Crane, R. K.: Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc.21, 891–895 (1962)

    Google Scholar 

  9. Deetjen, P.: Mikropunktionsuntersuchungen zur Wirkung von Furosemide. Pflügers Arch. ges. Physiol.284, 184–190 (1965)

    Google Scholar 

  10. Frasch, W., Frohnert, P. P., Bode, F., Baumann, K., Kinne, R.: Competitive inhibition of phlorizin binding byd-glucose and the influence of sodium: a study on isolated brush border membrane of rat kidney. Pflügers Arch.320, 265–284 (1970)

    Google Scholar 

  11. Frömter, E.: Der Salz- und Wassertransport im proximalen Tubulus der Niere. Physikalische Grundlagen. Nieren- u. Hochdruckkrankheiten3, 247–256 (1974)

    Google Scholar 

  12. Frömter, E.: Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. In: Kidney and urinary tract physiology, K. Thurau, ed., MTP Int. Rev. Science, Physiol. Ser. I, vol. 6, 1–38 (1974)

  13. Frömter, E.: The effect of inhibitors and diuretics on active transport potentials in rat kidney proximal tubule. In: Biochemical aspects of kidney function, S. Angielski, U. Dubach, eds. Bern: Huber (in press, 1975)

    Google Scholar 

  14. Frömter, E., Geßner, K.: Active transport potentials, membrane diffusion, potentials and streaming potentials across rat kidney proximal tubular epithelium. Pflügers Arch.351, 85–98 (1974)

    Google Scholar 

  15. Frömter, E., Rumrich, G., Ullrich, K. J.: Phenomenologic description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pflügers Arch.343, 189–220 (1973)

    Google Scholar 

  16. Frömger, E., Sato, K.: Electrical events in active H+/HCO3 transport across rat kidney proximal tubular epithelium. In: The mechanisms of physiological H+ secretion, D. Kasbekar, ed. New York: M. Dekker (in press, 1975)

    Google Scholar 

  17. Glossmann, H., Neville, D. M., Jr.: Phlorizin receptors in isolated kidney brush border membranes. Differential enzymatic modification of high-affinity receptors and unspecific binding sites. Biochim. biophys. Acta (Amst.)323, 408–414 (1973)

    Google Scholar 

  18. Häberle, D., Mason, J.: Untersuchungen zur Wirkung von Amilorid auf die Natriumresorption am proximalen Konvolut der Rattenniere. Pflügers Arch.339, R 48 (1973)

    Google Scholar 

  19. Heidenreich, O.: Quecksilberhaltige Diuretica. Handbook of Exp. Pharmacol., vol. 24, H. Hercken, ed., pp 62–194. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  20. Hoffman, J. F.: The red cell membrane and the transport of sodium and potassium. Amer. J. Med.41, 666–680 (1966)

    Google Scholar 

  21. Kleinzeller, A., Cort, J. H.: The mechanism of action of mercurial preparations on transport processes and the role of thiol groups in the cell membrane of renal tubular cells. Biochem. J.67, 15–24 (1957)

    Google Scholar 

  22. Landon, E. J., Norris, J. L.: Sodium- and potassium-dependent adenosine triphosphatase activity in a rat kidney endoplasmatic reticulum fraction. Biochim. biophys. Acta (Amst.)71, 266–276 (1963)

    Google Scholar 

  23. Machen, T. E., Diamond, J. M.: An estimate of salt concentration in the lateral intercellular spaces of rabbit gall-bladder during maximal fluid transport. J. Membr. Biol.1, 194–213 (1969)

    Google Scholar 

  24. Malnic, G., De Mello-Aires, M.: Kinetic study of bicarbonate reabsorption in proximal tubule of the rat. Amer. J. Physiol.220, 1759–1767 (1971)

    Google Scholar 

  25. Maren, T. H.: Renal carbonic anhydrase and the pharmacology of sulfonamide inhibitors. In: Handbook of Physiology, vol. 24 H. Hercken, ed., pp. 195–256. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  26. Meng, K.: Die am Nierentubulus wirksamen Diureticakonzentrationen. In: Biochemische Aspekte der Nierenfunktion, M. Hohenegger, Hrsg., S. 301–310. München: Goldmann 1972

    Google Scholar 

  27. Pitts, R. F., Alexander, R. S.: The nature of the renal tubular mechanism for acidifying the urine. Amer. J. Physiol.144, 239–254 (1945)

    Google Scholar 

  28. Radtke, H. W., Rumrich, G., Kinne-Saffran, E., Ullrich, K. J.: Dual action of acetazolamide and furosemide on proximal volume absorption in the rat kidney. Kidney Internat.1, 100–105 (1972)

    Google Scholar 

  29. Rector, F. C., Jr., Carter, N. W., Seldin, D. W.: The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. clin. Invest.44, 278–290 (1965)

    Google Scholar 

  30. Robinson, J. W. L., Liusier, A.-L.: Inhibition of renal sugar and amino-acid transport by n-butyl-biguanide. Naunyn-Schmiedeberg's Arch. Pharmacol.278, 23–34 (1973)

    Google Scholar 

  31. Schultz, S. G., Curran, P. F.: Coupled transport of sodium and organic solutes. Physiol. Rev.50, 637–718 (1970)

    Google Scholar 

  32. Schultz, S. G., Zalusky, R. J.: Ion transport in isolated rabbit ileum. J. gen. Physiol.47, 567–584 (1964)

    Google Scholar 

  33. Taylor, C. B.: The effect of mercurial diuretics on adenosine triphosphatase of rabbit kidney in vitro. Biochem. Pharmacol.12, 539–550 (1963)

    Google Scholar 

  34. Ullrich, K. J., Fasold, H., Klöss, S., Rumrich, G., Salzer, M., Sato, K., Simon, B., de Vries, J. X.: Effect of SH-, NH2- and COOH-site group reagents on the transport processes in the proximal convolution of the rat kidney. Pflügers Arch.344, 51–68 (1973)

    Google Scholar 

  35. Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory techniques in membrane biophysics, H. Passow, R. Stämpfli, eds., pp. 106–129. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  36. Ullrich, K. J., Radtke, H. W., Rumrich, G.: The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pflügers Arch.330, 149–161 (1971)

    Google Scholar 

  37. Ullrich, K. J., Sato, K., Rumrich, G.: Coupling of the transport processes across the brush border of the proximal renal tubule. Alfred Benzon Symp. V “Transport Mechanisms in Epithelia”, H. H. Ussing and N. A. Thorm, eds., pp. 560–571. Copenhagen: Munksgaard 1973

    Google Scholar 

  38. Vieira, F. L., Malnic, G.: Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Amer. J. Physiol.214, 710–718 (1968)

    Google Scholar 

  39. Whittembury, G.: Relationship between sodium extrusion and electrical potentials in kidney cells. In: Electrophysiology of epithelial cells, G. Giebisch, ed., pp. 153–178. Stuttgart: F. K. Schattauer 1971

    Google Scholar 

  40. Wilczewski, T. W., Olson, A. K., Carrasquer, G.: Effect of amiloride, furosemide and ethacrynic acid on Na transport in the rat kidney. Proc. Soc. exp. Biol. (N. Y.)145, 1301–1305 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frömter, E., Geßner, K. Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pflugers Arch. 357, 209–224 (1975). https://doi.org/10.1007/BF00585976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585976

Key words

Navigation