Skip to main content
Log in

Differential, direct effects of H+ on Ca2+-activated force of Skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effect of acidosis on Ca2+-activated force generation was studied in rabbit soleus, left ventricular, and adductor magnus muscles. Fibers were skinned (sarcolemma peeled off or mechanico-chemically disrupted) to facilitate direct manipulation and standardization of their intracellular ionic milieus according to bathing solution composition. Skinned single skeletal and small bundles of cardiac fibers were mounted in a photodiode force transducer and activated by immersion in buffered-Ca2+ bathing solutions. The magnitude of steady state isometric force at each [Ca2+] was determined at pH 7.0 and 6.5 (paired data) at both 1 mM and 10 mM Mg2+ in order to detect artifacts of errors in calculated [Ca2+]. All bathing solutions contained: 7 mM total EGTA [ethyleneglycol-bis-(β-amino-ethylether)-N,N′ tetra-acetic acid], 70 mM (Na++K+), 2 mM MgATP2− (Mg adenosine triphosphate), 15 mM CP2− (creatine phosphate), 15 units/ml CPK (creatine phosphokinase), imidazole (adjusted ionic strength to 0.15 M), and propionate anion at 23±1° C. Maximum tensions were similar at both [Mg2+]s but less at pH 6.5 than at pH 7.0, with the following order of mean magnitude of acidotic depression adductor>cardiac>soleus. The proportionately greater acidotic depression of submaximum (relative to maximum) forces that occurred only at 1 mM Mg2+ (cardiac>adductor>soleus) implicates acidotic depression of Ca2+-activated force as a major cause of decreased cardiac contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aicken, C., Thomas, R.: Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibers. J. Physiol. (Lond.)267, 791–810 (1977)

    Google Scholar 

  2. April, E.: The myofilament lattice: studies on isolated fibers. IV. Lattice equilibria in striated muscle. J. Mechanochem. Cell Motil.3, 111–121 (1975)

    Google Scholar 

  3. Best, P. M., Donaldson, S. K. B., Kerrick, W. G. L.: Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate. J. Physiol. (Lond.)265, 1–17 (1977)

    Google Scholar 

  4. Bremel, D., Weber, A.: Calcium binding to rabbit skeletal myosin under physiological conditions. Biochem. Biophys. Acta376, 366–374 (1975)

    Google Scholar 

  5. Chen-Liu, R., Endo, M.: Effects of pH on calcium-activated tension of skinned muscle fibers. Biophys. J. (abstr.)13, 181a (1973)

    Google Scholar 

  6. Cingolani, H., Matiazzi, A., Blesa, E., Gonzalez, N.: Contractility in isolated mammalian heart muscle after acid-base changes. Circ. Res.26, 269–278 (1970)

    Google Scholar 

  7. Close, R. I.: Dynamic properties of mammalian skeletal muscles. Physiol. Rev.52, 129–197 (1972)

    Google Scholar 

  8. Donaldson, S., Kerrick, W.: Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol.66, 427–444 (1975)

    Google Scholar 

  9. Donaldson, S., Best, P., Kerrick, W.: Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers. J. Gen. Physiol. (1978)

  10. Ebashi, S., Endo, M., Ohtusuki, I.: Control of muscle contraction. Q. Rev. Biophys.2, 351–384 (1969)

    Google Scholar 

  11. Ebashi, S., Masaki, T., Tsukui, R.: Cardiac contractile proteins. Adv. Cardiol.12, 59–69 (1974)

    Google Scholar 

  12. Fabiato, A., Fabiato, F.: Effects of magnesium on contractile activation of skinned cardiac cells. J. Physiol. (Lond.)249, 497–517 (1975)

    Google Scholar 

  13. Fabiato, A., Fabiato, F.: Effects of pH on the sensitivity of the myofilaments to calcium and on the releases of calcium from sarcoplasmic reticulum in skinned cells of cardiac and skeletal muscle. Biophys. J. (abstr.)16, 72a (1976)

    Google Scholar 

  14. Fuchs, F.: Chemical properties of the calcium receptor site of troponin as determined from binding studies. In: Calcium binding proteins (W. Drabikowski, H. Strzelecka-Bolaszewska, E. Carafoli, eds.), pp. 1–26. Warsaw: PWN-Polish Scientific Publishers 1974

    Google Scholar 

  15. Godt, R.: Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration. J. Gen. Physiol.63, 722–739 (1974)

    Google Scholar 

  16. Godt, R., Maughm, D.: Swelling of skinned muscle fibers of the frog. J. Gen. Physiol.19, 103–116 (1977)

    Google Scholar 

  17. Gordon, A., Godt, R., Donaldson, S., Harris, G.: Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition. J. Gen. Physiol.62, 550–574 (1973)

    Google Scholar 

  18. Hill, A. V.: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. (Lond.)40, iv-vii (1910)

    Google Scholar 

  19. Jacobus, W., Taylor, G., Hollis, D., Nunnally, R.: Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature265, 756–758 (1977)

    Google Scholar 

  20. Katz, A., Hecht, H.: The early “pump” failure of the ischemic heart. Am. J. Med.47, 497–502 (1969)

    Google Scholar 

  21. Kerrick, W., Best, P.: Calcium ion release in mechanically disrupted heart cells. Science183, 435–437 (1974)

    Google Scholar 

  22. Kerrick, W., Donaldson, S.: The comparative effects of [Ca2+] and [Mg2+] on tension generation in the fibers of skinned frog skeletal muscle and mechanically disrupted rat ventricular cardiac muscle. Pflügers Arch.358, 195–201 (1975)

    Google Scholar 

  23. Kerrick, W., Secrist, D., Coby, R., Lucas, S.: Development of difference between red and white muscles in sensitivity to Ca2+ in the rabbit from embryo to adult. Nature260, 440–441 (1976)

    Google Scholar 

  24. Lorkovic, H.: Influence of changes in pH on the mechanical activity of cardiac muscle. Circ. Res.19, 711–720 (1966)

    Google Scholar 

  25. Nakamura, Y., Schwartz, A.: Possible control of intracellular calcium metabolism by [H+]: sarcoplasmic reticulum of skeletal and cardiac muscle. Biochem. Biophys. Res. Commun.41, 830–836 (1970)

    Google Scholar 

  26. Nakamura, Y., Schwartz, A.: The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum. J. Gen. Physiol.59, 22–32 (1972)

    Google Scholar 

  27. Nikei, T., Noda, L., Morales, M.: Kinetic properties and equilibrium constant of the adenosine triphosphate-creatine transphosphorylase catalyzed reaction. J. Biol. Chem.236, 3202–3207 (1961)

    Google Scholar 

  28. Ng, M., Levy, M., Zieske, H.: Effects of changes of pH and of carbon dioxide tension on left ventricular performance. Am. J. Physiol.213, 115–120 (1967)

    Google Scholar 

  29. Pannier, J. L., Leusen, I.: Contraction characteristics of papillary muscle during changes in acid-base composition of the bathing fluid. Arch. Int. Physiol. Biochim.76, 624–634 (1968)

    Google Scholar 

  30. Pannier, J. L., Weyne, J.: The influence of lactate on the contractile properties of papillary heart muscle. Arch. Int. Physiol. Biochem.78, 101–110 (1970)

    Google Scholar 

  31. Pannier, J., Weyne, J., Leusen, I.: Effects ofP CO 2, bicarbonate and lactate on the isometric contractions of isolated soleus muscle of the rat. Pflügers Arch.320, 120–132 (1970)

    Google Scholar 

  32. Polemini, P., Page, E.: Magnesium in heart muscle. Circ. Res.33, 367–374 (1973)

    Google Scholar 

  33. Poole-Wilson, P. A.: Is early decline of cardiac function in ischemia due to carbon-dioxide retention. Lancet1, 1285–1287 (1975)

    Google Scholar 

  34. Poole-Wilson, P. A., Langer, G. A.: Effect of pH on ionic exchange and function in rat and rabbit myocardium. Am. J. Physiol.229, 570–581 (1975)

    Google Scholar 

  35. Potter, J.: Effect of Mg2+ on Ca2+ binding to myosin. Fed. Proc.34, 671 (1975)

    Google Scholar 

  36. Potter, J., Gergely, J.: The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J. Biol. Chem.250, 4628–4633 (1975)

    Google Scholar 

  37. Robertson, S., Kerrick, W.: The effects of pH on submaximal and maximal Ca2+-activated tension in skinned frog skeletal fibers. Biophys. J. (abstr.)16, 73a (1976)

    Google Scholar 

  38. Rome, E.: Light and X-ray diffraction studies of the filament lattice of glycerol-extracted rabbit psoas muscle. J. Mol. Biol.27, 491–602 (1967)

    Google Scholar 

  39. Schädler, M.: Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten kontraktilen Strukturen verschiedener Muskelarten. Pflügers Arch.296, 70–90 (1967)

    Google Scholar 

  40. Serur, J., Skelton, C., Bodem, R., Sonnenblick, E.: Respiratory acid-base changes and myocardial contractility: interaction between calcium and hydrogen ions. J. Mol. Cell. Cardiol.8, 823–836 (1976)

    Google Scholar 

  41. Solaro, J., Shiner, J.: Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Circ. Res.39, 8–14 (1976)

    Google Scholar 

  42. Tsien, R.: Possible effects of hydrogen ions in ischemic myocardium. Circulation53, (Suppl. I), 114–116 (1976)

    Google Scholar 

  43. Waddell, W., Bates, R.: Intracellular pH. Phys. Rev.49, 285–329 (1969)

    Google Scholar 

  44. Williamson, J. R., Schaffer, S., Ford, C., Safer, B.: Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation53, (Suppl. I), 13–126 (1976)

    Google Scholar 

  45. Wyman, J.: Allosteric effects in hemoglobin. Cold Spring Harbor Symp. Quant. Biol.28, 483–504 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Institute of Health grants HL 17373 and RR00374. Preliminary report: Biophysical J. (abs)17, 201a (1977)

Dr. Hermansen was a visiting scientist supported by Fogarty International Fellowship Grant TWO2230 from the National Institutes of Health and by the Perkins Fund of the American Physiological Society. Present Address: Institute of Work Physiology, Oslo, Norway

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolitho Donaldson, S.K., Hermansen, L. & Bolles, L. Differential, direct effects of H+ on Ca2+-activated force of Skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch. 376, 55–65 (1978). https://doi.org/10.1007/BF00585248

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585248

Key words

Navigation