Skip to main content
Log in

Blocking action of intracellularly injected neuraminidase on central synapses in vivo

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effect of neuraminidase on synaptic transmission was studied at cholinergic and noncholinergic contacts in the buccal and cerebral ganglion of Aplysia. The amplitudes of monosynaptic unitary postsynaptic potentials generated by intracellular stimulation of identified presynaptic neurones were measured as indication for the efficacy of synaptic transmission. Neuraminidase was either intrasomatically injected into a presynaptic neurone, or the whole ganglion was incubated with the enzyme.

Intrasomatic injection of the enzyme resulted in complete failure of synaptic transmission. This effect occurred independently of the transmitter used. The synaptic failure was presynaptic in origin. The biophysical characteristics of an injected neurone, particularly the amplitude and propagation of its action potential, did not appear to be affected by neuraminidase. Synaptic transmission and biophysical membrane properties were unaffected by extracellular neuraminidase.

We conclude that the synaptic blockade is due to the enzyme's action inside the presynaptic nerve ending. It seems most likely that neuraminidase cleaves sialicacid-containing-compounds associated with the nerve terminal surface membrane, probably thus causing failure of transmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustinsson, K.-B., Ekedahl, G.: The properties of neuraminidasetreated serum cholinesterase. Biochim. Biophys. Acta56, 392–393 (1962)

    Google Scholar 

  • Baux, G., Simonneau, M., Tauc, L.: Transmitter release: ruthenium red used to demonstrate a possible role of sialic acid containing substrates. J. Physiol. (Lond.)291, 161–178 (1979)

    Google Scholar 

  • Breckenridge, W. C., Gombos, G., Morgan, I. G.: The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim. Biophys. Acta266, 696–707 (1972)

    Google Scholar 

  • Brodbeck, U., Gentinetta, R., Lundin, S. J.: Multiple forms of a cholinesterase from body muscle and possible role of sialic acid in cholinesterase reaction specificity. Acta Chem. Scand.27, 561–572 (1973)

    Google Scholar 

  • Brunngraber, E. G., Dekirmenjian, H., Brown, B. D.: The distribution of protein-bound N-acetylneuraminic acid in subcellular fractions of rat brain. Biochem. J.103, 73–78 (1967)

    Google Scholar 

  • Coggeshall, R. E., Kandel, E. R., Kupfermann, I., Waziri, R.: A morphological and functional study on a cluster of identifiable neurosecretory cells in the abdominal ganglion ofAplysia californica. J. Cell. Biol.31, 363–368 (1966)

    Google Scholar 

  • Dekirmenjian, H., Brunngraber, E. G.: Distribution of proteinbound N-acetylneuraminic acid in subcellular particulate fractions prepared from rat whole brain. Biochim. Biophys. Acta177, 1–10 (1969)

    Google Scholar 

  • Drzeniek, R.: Viral and bacterial neuraminidase. Curr. Top. Microbiol. Immunol.59, 35–74 (1972)

    Google Scholar 

  • Eichberg, J., Whittaker, V. P., Dawson, R. M. C.: The distribution of lipids in subcellular particles of guinea-pig brain. Biochem. J.92, 91–100 (1964)

    Google Scholar 

  • Gardner, D.: Bilateral symmetry and interneuronal organization in the buccal ganglion ofAplysia. Science173, 550–553 (1971)

    Google Scholar 

  • Heijlman, J., Roukema, P. A.: Action of calf brain sialidase on gangliosides, sialoglycoproteins and sialoglycopeptides. J. Neurochem.19, 2567–2575 (1972)

    Google Scholar 

  • Heilbronn, E.: Treatment of horse serum cholinesterase with sialidase. Acta Chem. Scand.16, 516 (1962)

    Google Scholar 

  • Heilbronn, E., Cedergren, E.: Chemically induced changes in the acetylcholine uptake and storage capacity of brain tissue. In: Conference on the effect of cholinergic mechanisms in the CNS (E. Heilbronn, A. Winter, eds.),pp. 245–269. Stockholm (Sweden): Skoklostu 1970

    Google Scholar 

  • Hinzen, D. H., Davies, M. A.: Synaptic connexions and related postsynaptic pharmacology studied in the cerebral ganglion ofAplysia. Brain Res.144, 49–62 (1978)

    Google Scholar 

  • Hughes, G. M., Tauc, L.: The path of giant cell axons inAplysia depilans. Nature191, 404–405 (1961)

    Google Scholar 

  • Lapetina, E. G., Soto, E. F., De Robertis, E.: Gangliosides and acetylcholinesterase in isolated membranes of rat brain cortex. Biochim. Biophys. Acta135, 33–43 (1967)

    Google Scholar 

  • Lapetina, E. G., Soto, E. F., De Robertis, E.: Lipids and Proteolipids in isolated subcellular membranes of rat brain cortex. J. Neurochem.15, 437–445 (1968)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Lüben, G., Sedlacek, H. H., Seiler, F. R.: Quantitative experiments on the cell membranes binding of neuraminidase. Behring Inst. Mitt.59, 30–37 (1976)

    Google Scholar 

  • Öhman, R.: Subcellular fraction of ganglioside sialidase from human brain. J. Neurochem.18, 89–95 (1971)

    Google Scholar 

  • Rahmann, H., Rösner, H., Breer, H.: A functional model of sialoglyco-macromolecules in synaptic transmission and memory function. J. Theor. Biol.57, 231–237 (1976)

    Google Scholar 

  • Schengrund, C.-L., Rosenberg, A.: Intracellular location and properties of bovine brain sialidase. J. Biol. Chem.245, 6196–6200 (1970)

    Google Scholar 

  • Schick, H. J., Zilg, H.: Production and quality control of therapeutically applicableVibrio cholerae neuraminidase (VCN). Dev. Biol. Stand.38, 81–85 (1978)

    Google Scholar 

  • Seminario, L. M., Hren, N., Gomez, C. J.: Lipid distribution in subcellular fractions of the rat brain. J. Neurochem.11, 197–207 (1964)

    Google Scholar 

  • Svensmark, O., Kristensen, P.: Electrophoretic mobility of sialidasetreated human serum cholinesterase. Dan. Med. Bull.9, 16–17 (1962)

    Google Scholar 

  • Tauc, L., Hinzen, D. H.: Neuraminidase: its effect on synaptic transmission. Brain Res.80, 340–344 (1974)

    Google Scholar 

  • Tettamanti, G., Morgan, I. G., Gombos, G., Vincendon, G., Mandel, P.: Subsynaptosomal localization of brain particulate neuraminidase. Brain Res.47, 515–518 (1972)

    Google Scholar 

  • Tettamanti, G., Preti, A., Lombardo, A., Bonali, F., Zambotti, V.: Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim. Biophys. Acta306, 466–477 (1973)

    Google Scholar 

  • Vaccari, A., Vertua, R., Furlani, A.: Decreased calcium uptake by rat fundal strips after pretreatment with neuraminidase or LSD in vitro. Biochem. Pharmacol.20, 2603–2612 (1971)

    Google Scholar 

  • Warren, L.: The thiobarbituric acid assay of sialic acids. J. Biol. Chem.234, 1971–1975 (1959)

    Google Scholar 

  • Whittaker, V. P.: Some properties of synaptic membranes isolated from the central nervous system. Ann. N. Y. Acad. Sci.137, 982–998 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hipp, F.X., Gielen, W., Davies, M.A. et al. Blocking action of intracellularly injected neuraminidase on central synapses in vivo. Pflügers Arch. 385, 45–50 (1980). https://doi.org/10.1007/BF00583914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583914

Key words

Navigation