Skip to main content
Log in

A new double-barrelled, ionophore-based microelectrode for chloride ions

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

A new Cl selective microelectrode based on the ionophore 5,10,15,20-tetraphenyl-21H,23H-porphin manganese(III) chloride is presented which discriminates better against HCO 3 and several organic anions than electrodes containing the Corning 477913 ion-eschanger. Using a redesigned construction procedure, fine-tip double-barrelled microelectrodes were produced which had slopes of −52.4±0.6 mV (SE,n=24), resistances of about 7·1011 Ω and a selectivity coefficient logK potCl, HCO3 of −1.40±0.03. Some electrodes showed a small unexplained sensitivity to pH>7.6. When used to puncture cells of isolated S3 segments of rabbit renal proximal tubule during perfusion with HCO 3 Ringer solution, the electrodes gave a membrane potential of −69.8±1.5 mV and an intracellular Cl activity, [Cl]i, of 35.3±2.6 mmol/l. Upon switching bath and lumen perfusions to Cl-free solutions the “residual” [Cl]i dropped to 1.20±0.03 mmol/l, while in similar measurements with ion-exchanger electrodes the “residual” [Cl]i dropped only to 10.9±0.5 mmol/l. These observations demonstrate the superiority of the new electrode and prove that previously determined high [Cl]i values in Cl-free ambient solutions reflect interference problems rather than non-exchangeable intracellular chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann D (1986) Ion-selective microelectrodes. Principles, design and application. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Ammann D, Anker P (1985) Neutral carrier sodium ion-selective microelectrode for extracellular studies. Neurosci Lett 57:267–271

    Google Scholar 

  3. Ammann D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W (1981) A neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal Chem 53:2267–2269

    Google Scholar 

  4. Ammann D, Pretsch E, Simon W, Lindner E, Bezegh A, Pungor E (1985) Lipophilic salts as membrane additives and their influence on the properties of macro- and microelectrodes based on neutral carriers. Anal Chim Acta 171:119–129

    Google Scholar 

  5. Ammann D, Huser M, Kräutler B, Rusterholz B, Schulthess P, Lindemann B, Halder E, Simon W (1986) Anion selectivity of metalloporphyrins in membranes. Helv Chim Acta 69:849–854

    Google Scholar 

  6. Ammann D, Bührer T, Schefer U, Müller M, Simon W (1987) Intracellular neutral carrier-based Ca2+ microelectrode with subnanomolar detection limit. Pflügers Arch 409:223–228

    Google Scholar 

  7. Amman D, Chao P, Simon W (1987) Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett 74:221–226

    Google Scholar 

  8. Ammann D, Oesch U, Bührer T, Simon W (1987) Design of ionophores for ion-selective microsensors. Can J Physiol Pharmacol 65:879–884

    Google Scholar 

  9. Baumgarten CM (1981) An improved liquid ion exchanger for chloride ion-selective microelectrodes. Am J Physiol 241: C258–263

    Google Scholar 

  10. Bührer T, Peter H, Simon W (1988) NH +4 ion-selective microelectrode based on the antibiotics nonactin/monactin. Pflügers Arch 412:359–362

    Google Scholar 

  11. Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210:1293–1298

    Google Scholar 

  12. Chaniotakis NA, Chasser AM, Meyerhoff ME (1988) Influence of porphyrin structure on anion selectivities of manganese(III) porphyrin based membrane electrodes. Anal Chem 60:185–188

    Google Scholar 

  13. Chaniotakis NA, Park SB, Meyerhoff ME (1989) Salicylateselective membrane electrode based on tin(IV) tetraphenylporphyrin. Anal Chem 61:566–570

    Google Scholar 

  14. Chao P, Amman D, Oesch U, Simon W, Lang F (1988) Extra- and intracellular hydrogen ion-selective microelectrode based on neutral carriers with extended pH response range in acid media. Plügers Arch 411:216–219

    Google Scholar 

  15. Geigy JR, AG (1979) Wissenschaftliche Tabellen Geigy, vol 2. Ciba Geigy Ltd, Basel, Switzerland, p 81

    Google Scholar 

  16. Hu Z, Bührer T, Müller M, Rusterholz B, Rouilly M, Simon W (1989) Intracellular magnesium ion-selective microelectrode based on a neutral carrier. Anal Chem 61:574–576

    Google Scholar 

  17. Huser M (1989) Dissertation, ETH Zürich Switzerland

  18. Khuri RN, Agulian SK, Wise WM (1971) Potassium in the rat kidney proximal tubules in situ: Determination by K+ selective liquid ion-exchanger microelectrodes. Pflügers Arch 322:39–46

    Google Scholar 

  19. Khuri RN, Agulian SK, Bogharian K (1974) Electrochemical potentials of chloride in distal renal tubule of the rat. Am J Physiol 227:1352–1355

    Google Scholar 

  20. Kondo Y, Frömter E (1987) Axial heterogeneity of sodiumbicarbonate contransport in proximal straight tubule of rabbit kidney. Pflügers Arch 410:481–486

    Google Scholar 

  21. Lanter F, Erne D, Ammann D, Simon W (1980) Neutral carrier based ion-selective electrode for intracellular magnesium activity studies. Anal Chem 52:2400–2402

    Google Scholar 

  22. Lanter F, Steiner RA, Ammann D, Simon W (1982) Critical evaluation of the applicability of neutral carrier-based calcium microelectrodes. Anal Chim Acta 135:51–59

    Google Scholar 

  23. Rick R, Dörge A, Arnim E, Thurau K (1978) Electron microprobe analysis of frog skin epithelium. Evidence for a syncytial sodium transport compartment. J Membr Biol 39:313–331

    Google Scholar 

  24. Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196

    Google Scholar 

  25. Somlyo AP, Schuman H (1982) Electroprobe and electron energy loss analysis in biology. Ultramicroscopy 8:219–234

    Google Scholar 

  26. Steiner RA, Oehme M, Ammann D, Simon W (1979) Neutral carrier sodium ion-selective microelectrode for intracellular studies. Anal Chem 51:351–353

    Google Scholar 

  27. Thomas JR, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Google Scholar 

  28. Thomas RC (1978) Ion-sensitive intracellular microelectrodes. How to make and use them. Academic Press, New York London

    Google Scholar 

  29. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Google Scholar 

  30. Walker JL Jr (1971) Ion specific liquid ion exchanger microelectrodes. Anal Chem 43:89A-93A

    Google Scholar 

  31. Yoshitomi K, Frömter E (1984) Cell pH of rat renal proximal tubule in vivo and the conductive nature of pertitubular HCO 3 (OH) exit. Pflügers Arch 402:300–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, Y., Bührer, T., Frömter, E. et al. A new double-barrelled, ionophore-based microelectrode for chloride ions. Pflugers Arch. 414, 663–668 (1989). https://doi.org/10.1007/BF00582133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582133

Key words

Navigation