Skip to main content
Log in

Local flow velocities in the cat carotid body tissue

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

With the aid of a new three-dimensional mathematical model local flow velocities in the specific carotid body tissue of the cat measured by hydrogen clearances were calculated to have a mean value of 0.006 cm/s at a perfusion pressure of 50 mm Hg, 0.014 cm/s at a perfusion pressure of 120 mm Hg, and 0.018 cm/s at a perfusion pressure of 170 mm Hg. These results indicate that the carotid body specific tissue possesses a distinct flow heterogeneity with normal capillary flow velocities and a high shunt flow. During hypoxia, the smallest decrease in tissuePO2 was significantly correlated with the highest decrease in flow velocity. This suggests that the carotid body capillary network itself exhibits aPO2 sensor mechanisms amplifying the chemoreceptive process in the specific cell elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker H (1980) The meaning of tissuePO2 and local blood flow for the chemoreceptive process of the carotid body. Fed Proc 39:2641–2647

    Google Scholar 

  2. Acker H, Lübber DW, Durst H (1977) The relationship between local flow and total flow of the cat carotid body at changes of blood pressure, arterialPO2 andPCO2. Bibl Anat 15:395–398

    Google Scholar 

  3. Acker H, O'Regan RG (1981) The effects of stimulation of autonomic nerves on carotid body blood flow in the cat. J Physiol 315:99–110

    Google Scholar 

  4. Böck P, Stoekinger L, Vyslonzil E (1970) Die Feinstruktur des Glomus caroticum beim Menschen. Z Zellf 105:543–568

    Google Scholar 

  5. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, London, p 261

    Google Scholar 

  6. Daly M, Lambertsen CJ, Schweitzer A (1954) Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J Physiol 125:67–89

    Google Scholar 

  7. Degner F, Acker H (1986) Mathematical analysis of tissuePO2 distribution in the cat carotid body. Pflügers Arch 407:305–311

    Google Scholar 

  8. Eyzaguirre C, Zapata P (1984) Perspectives in carotid body research. J Appl Physiol 57 (4):931–947

    Google Scholar 

  9. Himmelblau DM (1964) Diffusion of dissolved gases in liquids. Chem Rev 64:527–550

    Google Scholar 

  10. Keller HP, Lübbers DW (1972) Flow measurements in the carotid body of the cat by the hydrogen clearance method. Pflügers Arch 336:217–224

    Google Scholar 

  11. Lübbers DW, Acker H, Keller HP, Seidl E (1973) The influence of blood pressure and blood flow on the local tissuePO2 of the carotid body. In: Kovách AGB, Stones HB, Spitzer JJ (eds) Neurohumoral and metabolic aspects of injury. Plenum Press, New York London, pp 463–473

    Google Scholar 

  12. McDonald DM, Larue DT (1983) The ultrastructure and connections of blood vessel supplying the rat carotid body and carotid sinus. J Neurocytol 12:117–153

    Google Scholar 

  13. Neil E, O'Regan RG (1971) The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J Physiol 215:15–32

    Google Scholar 

  14. O'Regan RG (1981) Responses of carotid body chemosensory activity and blood flow to stimulation of sympathetic nerves in the cat. J Physiol 315:81–98

    Google Scholar 

  15. Purves MJ (1970) The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat. J Physiol 209:395–416

    Google Scholar 

  16. Sachs L (1978) Angewandte Statistik—Statistische Methoden und ihre Auswertung, 5. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Seidl E (1976) On the variability of form and vascularization of the cat carotid body. Anat Embryol 149:79–86

    Google Scholar 

  18. Seidl E, Acker H, Teckhaus L (1979) Quantitative Erfassung des Gefäßvolumens des Glomus caroticum der Katze unter den Bedingungen der Normoxie, Hyperoxie, Hypoxie and Hypercapnie. Microsc 3:185–189

    Google Scholar 

  19. Stakgold I (1977) Green's function and boundary value problems. John Wiley & Sons, New York, p 9

    Google Scholar 

  20. Stosseck K, Lübbers DW, Cottin N (1974) Determination of local blood flow (microflow) by electrochemically generated hydrogen. Pflügers Arch 348:225–238

    Google Scholar 

  21. Weigelt H, Seidl E, Acker H, Lübbers DW (1980) Distribution of oxygen partial pressure in the carotid body region and in the carotid body (rabbit). Pflügers Arch 388:137–142

    Google Scholar 

  22. Wodick R (1976) Compensation of measuring errors produced by finite response time in polarographic measurements with electrodes sensitive to oxygen and hydrogen. Pflügers Arch 336:327–344

    Google Scholar 

  23. Wodick R (1976) Möglichkeiten und Grenzen der Bestimmung der Blutversorgung mit Hilfe der lokalen Wasserstoffclearance. Akademie der Wissenschaften und der Literatur, Mainz

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilsmann, J., Degner, F. & Acker, H. Local flow velocities in the cat carotid body tissue. Pflugers Arch. 410, 204–211 (1987). https://doi.org/10.1007/BF00581917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581917

Key words

Navigation