Skip to main content
Log in

Cardiac Purkinje fibres

Resting, action, and pacemaker potential under the influence of [Ca2+] i as modified by intracellular injection techniques

  • Exitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

CaCl2, K-EGTA or Ca-EGTA were injected into shortened Purkinje fibres in order to modify the concentration of ionized calcium ([Ca2+]i). Two injection techniques were used: A method of microiontophoresis between two intracellular microelectrodes and a method of pressure injection using heating in a closed system.

Continuous microiontophoresis of CaCl2 at a rate of 10−13 Mol/s, caused shortening of the action potential, enhancement of the afterpotential, and hyperpolarisation of the resting potential within 1 s. This response was steady within about 10 s and disappeared in less than 1 s when injection was ended. Pressure injection of small volumes of 1 M CaCl2 evoked the same response. Injection of KCl was ineffective.

When K-EGTA was injected the action potential became longer and the afterpotential was suppressed. After 2 min of continuous injection the fibres depolarized to about −40 mV. The effect of K-EGTA injection was fully reversible but recovery required several minutes.

Injection of Ca-EGTA buffer solutions evoked (initially) a response similar to that described for CaCl2 injection provided that [Ca2+]i was greater than 5·10−7 M. Conversely, when [Ca2+]i was equal to or less than 1·10−7 M an EGTA-like response could be seen.

The results favour (but do not prove) the idea that [Ca2+]i mediates the observed effects via an influence on the potassium conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader, C., Bertrand, D., Bertrand, G., Perrelet, A.: A pressure device for intracellular injection. Experientia30, 1366–1367 (1974)

    Google Scholar 

  • Baker, P. F.: Transport and metabolism of calcium ions in nerve. Progr. Biophys. Molec. Biol.24, 179–223 (1972)

    Google Scholar 

  • Baker, P. F., Crawford, A. C.: Mobility and transport of magnesium in squid giant axons. J. Physiol. (Lond.)227, 855–874 (1972)

    Google Scholar 

  • Bassingthwaighte, J. B., Fry, C. H., McGuigan, J. A. S.: Relationship between internal calcium and outward current in mammalian ventricular muscle a mechanism for the control of action potential duration. J. Physiol. (Lond.)262, 15–38 (1976)

    Google Scholar 

  • Begenisich, T., Lynch, C.: Effects of internal divalent cations on voltage-clamped squid axons. J. Gen. Physiol.63, 675–689 (1974)

    Google Scholar 

  • Brinley, F. J., Spangler, S. G., Mullins, L. J.: Calcium and EGTA fluxes in dialyzed squid axons. J. Gen. Physiol.66, 223–250 (1975)

    Google Scholar 

  • Deck, K., Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol.280, 63–80 (1964)

    Google Scholar 

  • Deck, K., Kern, R., Trautwein, W.: Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch. ges. Physiol.280, 50–62 (1964)

    Google Scholar 

  • DeMello, W. C.: Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol. (Lond.)250, 231–245 (1975)

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: The potassium component of membrane current in Purkinje fibres. Pflügers Arch.296, 308–327 (1967)

    Google Scholar 

  • Dreyer, F., Peper, K.: Iontophoretic application of acetylcholine: Advantages of high resistance micropipettes in connection with an electronic current pump. Pflügers Arch.348, 263–272 (1974)

    Google Scholar 

  • Fabiato, A., Fabiato, F.: Contraction induced by a calcium0trigered release of Ca from the sarcoplasmic reticulum from single skinned cardiac cells. J. Physiol. (Lond.)249, 269–295 (1975)

    Google Scholar 

  • Fry, C. H., McGuigan, J. A. S., Bassingthwaighte, J. B.: Control of cardiac action potential duration by Cai? Experientia31, 709 (1975)

    Google Scholar 

  • Gardoš, G.: The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol. Acad. Sci. Hung.15, 121–125 (1959)

    Google Scholar 

  • Gibbons, W. R., Fozzard, H. A.: Relationship between voltage and tension in sheep cardiac Purkinje fibres. J. Gen. Physiol.65, 345–365 (1975)

    Google Scholar 

  • Inesi, G.: Active transport of calcium ions in sarcoplasmic membranes. Biophys. Bioengn.1, 191–210 (1972)

    Google Scholar 

  • Isenberg, G.: Is potassium conductance of cardiac Purkinje fibres controlled by [Ca2+]i? Nature (Lond.)253, 273–274 (1975a)

    Google Scholar 

  • Isenberg, G.: Is potassium conductance controlled by [Ca2+]i? 5th Internat. Biophys. Congress, Copenhagen, 4.–9. August 1975, p. 519 (1975b)

  • Isenberg, G.: Cardiac Purkinje fibres. The slow inward current component under the influence of modified [Ca2+]i. Pflügers Arch.371, 61–69 (1977a)

    Google Scholar 

  • Isenberg, G.: Cardiac Purkinje fibres. [Ca2+]i controls steady state potassium conductance. Pflügers Arch.371, 71–76 (1977b)

    Google Scholar 

  • Isenberg, G.: Cardiac Purkinje fibres. [Ca2+]i controls the potassium permeability via the conductance components gK1 and gK2. Pflügers Arch.371, 77–85 (1977c)

    Google Scholar 

  • Kass, R. S., Tsien, R. W.: Control of action potential duration by calcium ions in cardiac Purkinje fibres. J. Gen. Physiol.67, 599–617 (1976)

    Google Scholar 

  • Krnjevic, K., Lisiewicz, A.: Injections of calcium ions into spinal motoneurons. J. Physiol. (Lond.)225, 363–390 (1972)

    Google Scholar 

  • Kushmerick, J. J., Podolski, R. J.: Ionic mobility in muscle cells. Science166, 1297 (1969)

    Google Scholar 

  • McAllister, R. E., Noble, D.: The time and voltage dependence of the slow outward current in cardiac Purkinje-fibres. J. Physiol. (Lond.)186, 632–662 (1966)

    Google Scholar 

  • Meech, R. W.: Intracellular calcium injection causes increased potassium conductance inAplysia nerve cells. Biochem. Physiol.42A, 493–499 (1972)

    Google Scholar 

  • Meech, R. W.: The sensitivity ofHelix aspersa neurons to injected calcium ions. J. Physiol. (Lond.)237, 237–277 (1974)

    Google Scholar 

  • Meech, R. W., Standen, N. B.: Potassium activation inHelix aspersa neurons under voltage clamp: A component mediated by calcium influx. J. Physiol. (Lond.)249, 211–239 (1975)

    Google Scholar 

  • Portzehl, H., Caldwell, P. C., Ruegg, J. C.: The dependence of concentration and relaxation of muscle fibres from the crabMaia squinada on the internal concentration of free calcium ions. Biochim. Biophys. Acta79, 581–591 (1964)

    Google Scholar 

  • Schmidt, R. F., Chang, J. J.: Aktionspotential und Mechanogramm von Purkinje-Fäden in tiefer Temperatur. Pflügers Arch. ges. Physiol.272, 393–399 (1960)

    Google Scholar 

  • Trautwein, W.: Pathophysiologie des Herzflimmerns. Pflügers Arch. ges. Physiol.283, 40–56 (1965)

    Google Scholar 

  • Trautwein, W., Dudel, J.: Hemmende und “erregende” Wirkungen des Acetylcholin am Warmblüterherzen. Zur Frage der spontanen Erregungsbildung. Pflügers Arch. ges. Physiol.266, 653–664 (1958)

    Google Scholar 

  • Whittam, R.: Control of membrane permeability to potassium in red blood cells. Nature (Lond.)219, 610 (1968)

    Google Scholar 

  • Wolf, H. U.: Divalent metal ion buffers with low pH sensitivity. Experientia29, 241–249 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by SFB 38, Membranforschung, project G2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenberg, G. Cardiac Purkinje fibres. Pflugers Arch. 371, 51–59 (1977). https://doi.org/10.1007/BF00580772

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580772

Key words

Navigation