Skip to main content
Log in

Type 1 diabetes mellitus: an imbalance between effector and regulatory T cells?

  • Review
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Abundant evidence now exists that autoimmunity plays a critical role in the pathogenesis of type 1 (insulin-dependent) diabetes mellitus. The non-obese diabetic (NOD) mouse is an extensively studied animal model of this T-cell-mediated autoimmune disease. Our laboratory has focused on isolating diabetogenic T cell clones from NOD mice as a means of elucidating the pathogenesis of type 1 diabetes. This experimental approach presupposes that type 1 diabetes in NOD mice results from the action of islet-reactive T cells that are not present in other mouse strains; the diabetogenic T cells would therefore represent “forbidden clones” which exist in NOD mice as a result of a failure of clonal deletion. While the inappropriate presence of diabetogenic T cells probably play a central role in murine diabetes, it cannot explain all aspects of the disease. Type 1 diabetes is a chronic disorder with a lengthy preclinical stage; if the diabetogenic T cells acted in an unopposed fashion, one might expect to see a much more fulminant clinical course. This observation suggests that regulatory influences are likely to exist in this disease —a possibility supported by recent experimental data. If these regulatory influences could be identified and enhanced, specific immunotherapy for type 1 diabetes could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gepts W, The pathology of the pancreas in human diabetes. In: Andreani D, DiMario U, Federlin KF, Heding LG (eds) Immunology in diabetes. Kimpton, London, pp 21, 1984

    Google Scholar 

  2. Patterson K, Chandra RS, Jenson AB, Congenital rubella, insulitis, and diabetes mellitus in an infant. Lancet I:1048, 1981

    Article  Google Scholar 

  3. Yoon JW, Austin M, Onodera T, Notkins AL, Virus-induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173, 1979

    Article  PubMed  CAS  Google Scholar 

  4. Jensen AB, Rosenberg HS, Notkins AL, Pancreatic islet cell damage in children with fatal viral infections. Lancet II:354, 1980

    Google Scholar 

  5. Notkins AL, Yoon J-W, Virus-induced diabetes melitus. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis. Spriger, Berlin Heidelberg New York, pp 241–247

  6. Gamble DR, The epidemiology of insulin-dependent diabetes mellitus with particular reference to the relationship of virus infection to its etiology. Epidemiol Rev 2:49, 1980

    PubMed  CAS  Google Scholar 

  7. Mensen MA, Forrest JM, Bransby RD, Rubella infection and diabetes mellitus. Lancet I:57, 1978

    Article  Google Scholar 

  8. Oldstone MBA Molecular mimicry and autoimmune disease. Cell 50:819, 1987

    Article  PubMed  CAS  Google Scholar 

  9. Kaufman DL, Erlander MG, Clare-Salzer M, Atkinson MA, Maclaren NK, Tobin AJ. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 89:283, 1992

    Article  PubMed  CAS  Google Scholar 

  10. Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H, Virus infection triggers insulin-dependent diabetes in a transgenic model: role of anti-self (virus) immune response. Cell 65:319, 1991

    Article  PubMed  CAS  Google Scholar 

  11. Wolf E, Spencer KM, Cudworth AG, The genetic susceptibility to type I (insulin dependent) diabetes mellitus. Diabetologia 24:224, 1983

    Article  PubMed  CAS  Google Scholar 

  12. Rimoin DI, Rotter JI, The genetics of diabetes mellitus. In: Immunology in diabetes Andreani D, DiMario U, Federlin KF, Heding LG (eds) Kimpton, London, pp 45, 1984

    Google Scholar 

  13. Todd JA, Bell JI, McDevitt HO, HLA-DQ beta gene contributes to susceptibility and resistance to insulin dependent diabetes mellitus. Nature 329:599, 1987

    Article  PubMed  CAS  Google Scholar 

  14. Slattery RM, Kjer-Nielsen L, Allison J, Charlton B, Mandel TE, Miller JFAP, Prevention of diabetes in non-obese diabetic I-Ak transgenic mice Nature 345:724, 1990

    Article  PubMed  CAS  Google Scholar 

  15. Doniach D, Spender KM, Bottazzo GF, Immunology of insulin-dependent diabetes. In: Rose NR, Mackay IR (eds). The autoimmune diseases. Academic Press, Orlando, p 227, 1985

    Google Scholar 

  16. McEvoy RC, Witt E, Ginsberg-Fellner F et al, Anti-insulin antibodies in children with type I diabetes mellitus. Diabetes 35:634, 1986

    Article  PubMed  CAS  Google Scholar 

  17. Baekkeskov S, Landin M Kristensen JK et al., Antibodies to a 64 000 Mr human islet cells antigen precede the clinical onset of insulin-dependent diabetes. J Clin Invest 79:926, 1987

    Article  PubMed  CAS  Google Scholar 

  18. Baekkeskov S, Aanstoot H-J, Christgau S, Reetz A, Solimena M, Cascalho M, Folli F, Richter-Olesen H, DeCamilli P, Identification of the 64-kd autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151, 1990

    Article  PubMed  CAS  Google Scholar 

  19. Tarn AC, Thomas JM, Dean BM, et al., Predicting insulin-dependent diabetes. Lancet I:845, 1988

    Article  Google Scholar 

  20. Bougneres P-F, Landais P, Boisson C, Carel J-C, Frament N, Boitard C, Chaussain J-L, Bach J-F, Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. Diabetes 39:1264, 1990

    Article  PubMed  CAS  Google Scholar 

  21. Feutren G, Boitard C, Bougneres P, Assan R, Bach JF, Cyclosporine for type I diabetes: lessons from first clinical trials and new perspectives. In: Eisenbarth GS (ed) Immunotherapy of diabetes and selected autoimmune diseases, p 61, 1989

  22. Silverstein J, Maclaren N, Azathioprine immunotherapy for insulin-dependent diabetes: US trials. In: Eisenbarth GS (ed) Immunotherapy of diabetes and selected autoimmune diseases. p 85, 1989

  23. Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB, The spontaneously diabetic Wistar rat: metabolic and morphologic studies. Diabetes 26:100, 1977

    Article  PubMed  CAS  Google Scholar 

  24. Like AA, Appel MC, Rossini AA Autoantibodies in the BB/W rat. Diabetes 31:816, 1982

    Article  PubMed  CAS  Google Scholar 

  25. Like AA, Rossini AA, Guberski DL, Appel MC, Williams RM, Spontaneous diabetes mellitus: reversal and prevention in the BB/W rat with antiserrum to rat lymphocytes. Science 206:1421, 1979

    Article  PubMed  CAS  Google Scholar 

  26. Like AA, Kislauskis E, Williams RM, Rossini AA, Neonatal thymectomy prevents diabetes mellitus in the BB/W rat. Science 216:644, 1982

    Article  PubMed  CAS  Google Scholar 

  27. Laupacis A, Stiller CR, Gardell C, Keown P, Dupre J, Wallace AC, Thibert P, Cyclosporine prevents diabetes in BB Wistar rats. Lancet I:10, 1983

    Article  Google Scholar 

  28. Jaworski MA, Honore L, Jewell LD, Mehta JG, McGuire-Clark P, Schouls JJ, Yap WY, Cyclosporine prophylaxis induces long-term prevention of diabetes, and inhibits lyphocytic infiltration in multiple target tissues in the high-risk BB rat. Diabetes Res 3:1, 1986

    PubMed  CAS  Google Scholar 

  29. Like AA, Dirodi V, Thomas S, Guberski DL, Rossini AA, Prevention of diabetes mellitus in the BB/W rat with cyclosporin-A. Am J Pathol 117:92, 1984

    PubMed  CAS  Google Scholar 

  30. Like AA, Guberski DL, Butler L, Diabetic BioBreeding/Worcester (BB/Wor) rats need not be lymphopenic. J Immunol 136:3254, 1986

    PubMed  CAS  Google Scholar 

  31. Greiner DL, Handler ES, Nakano K, Mordes JP, Rossini AA, Absence of the RT-6 T cell subset in diabetes-prone BB/W rats. J Immunol 136:148, 1986

    PubMed  CAS  Google Scholar 

  32. Ely JM, Greiner DL, Lubaroff DM, Fitch FW, Characterization of monoclonal antibodies that define rat T cell alloantigens. J Immunol 130:2798, 1983

    PubMed  CAS  Google Scholar 

  33. Grener DL, Mordes JP, Handler ES, Anegelillo M, Nakamura N, Rossini AA, Depletion of RT6.1+T lymphocytes induces diabetes in resistant BioBreeding/Worcester (BB/W) rats. J Exp Med 166:461, 1987

    Article  Google Scholar 

  34. Makino S, Kunimoto K, Murakoa Y, Mizushima Y, Katagiri K, Tochino Y, Breeding of a non-obese, diabetic strain of mice. Exp Anim 29:1, 1980

    CAS  Google Scholar 

  35. Makino S, Hayashi Y, Genetic analysis for insulitis in the NOD mouse. In: Insulitis and type I diabetes: lessons from the NOD mouse. Tarui S, Tochino Y, Nonaka K (Eds) Academic Press, Tokyo, p 23, 1986

    Google Scholar 

  36. Makino S, Kunimoto K, Muroaka Y, Katagiri K, Effect of castration on the appearance of diabetes in the NOD mouse. Exp Anim 30:137, 1981

    CAS  Google Scholar 

  37. Makino S, Muroaka Y, Kishimoto Y, Hayashi Y, Genetic analysis for insulitis in NOD mice. Exp Anim 34:425, 1985

    CAS  Google Scholar 

  38. Karounos DG, Thomas JW, Recognition of common islet antigen by autoantibodies from NOD mice and humans with IDDM. Diabetes 39:1085, 1990

    Article  PubMed  CAS  Google Scholar 

  39. Wicker LS, Miller BJ, Coker LZ, McNally SE, Scott S, Mullen Y, Appel MC, Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med 165:1639, 1987

    Article  PubMed  CAS  Google Scholar 

  40. Prochazka M, Leiter EH, Serreze DV, Coleman DL, Three recessive loci required for insulin-dependent diabetes in nonobese diabetic mice. Science 237:286, 1987

    Article  PubMed  CAS  Google Scholar 

  41. Garchon H-J, Bedossa P, Elloy L, Bach J-F, Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice. Nature 353:260, 1991

    Article  PubMed  CAS  Google Scholar 

  42. Cornall RJ, Prins J-B, Todd JA, Pressey A, DeLarato N, Wicker LS, Peterson LB, Type 1 diabetes in mice is linked to the interleukin 1 receptor and Lsh/Ity/Bcg genes on chromosome 1. Nature 353:262, 1991

    Article  PubMed  CAS  Google Scholar 

  43. Jacob CO, Aiso S, Michie SA, McDevitt HO, Acha-Orbea H, Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin-1. Proc Natl Acad Sci USA 87:968,1990

    Article  PubMed  CAS  Google Scholar 

  44. Hattori M, Buse JB, Jackson RA, Glimcher L, Dorf ME, Minami M, Makino S, Moriwaki K, Kuzuya H, Imura H, Strauss WM, Seidman JG, Eisenbarth GS, The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science 231:733, 1986

    Article  PubMed  CAS  Google Scholar 

  45. Ikegami H, Makino S, Harada M, Eisenbarth GS, Hattori M, The cataract Shionogi (CTS) mouse, a sister strain of the nonobese diabetic (NOD): similar class II but different class I gene products. Diabetologia 31:254, 1988

    Article  PubMed  CAS  Google Scholar 

  46. Acha-Orbea H, McDevitt HO, The first external domain of the non-obese diabetic mouse class II beta chain is unique. Proc Natl Acad Sci USA 84:2435, 1987

    Article  PubMed  CAS  Google Scholar 

  47. Slattery RM, Kjer-Nielsen L, Allison J, Charlton B, Mandel TE, Miller JFAP, Prevention of diabetes in non-obese diabetic I-Ak transgenic mice. Nature 345:724, 1990

    Article  PubMed  CAS  Google Scholar 

  48. Miyazaki T, Uno M, Uehira M, Kikutani H, Kishimoto T, Kimoto M, Nishimoto H, Miyazaki J, Yamamura K, Direct evidence for the contribution of the unique I-Anod to the development of insulitis in non-obese diabetic mice. Nature 345:722, 1990

    Article  PubMed  CAS  Google Scholar 

  49. Lund T, O'Reilly L, Hutchings P, Kanagawa O, Simpson E, Gravely R, Chandler P, Dyson J, Picard J, Edwards A, Kioussis D, Cooke A, Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature 345:727, 1990

    Article  PubMed  CAS  Google Scholar 

  50. Nishimoto H, Kikutani H, Yamamura K, Kishimoto T, Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. Nature 328:432, 1987

    Article  PubMed  CAS  Google Scholar 

  51. Lee KU, Amano K, Yoon J-W, Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 37:989, 1988

    Article  PubMed  CAS  Google Scholar 

  52. Ihm S-H, Yoon J-W, Macrophages essential for development of beta-cell-specific cytotoxic effectors and insulitis in NOD mice. Diabetes 39: 1273, 1990

    Article  PubMed  CAS  Google Scholar 

  53. Makino S, Kunimoto K, Muroaka Y, Katagiri K, Effect of castration on the appearance of diabetes in the NOD mouse. Exp Anim 30:137, 1981

    CAS  Google Scholar 

  54. Yano N, Barbieri R, Ikegami H, Sato T, Makino S, Hattori M, Orchiectomy accelerates but ovariectomy prohibits beta cell destruction of the NOD mouse. Diabetes 37 [Suppl 1]:21A, 1988

  55. Suzuki T et al. In: Rygaard J, Groem N, Spang-Thomson M, (eds) Immuni-deficient animals in biomedical research. Karger, Basel, pp 112–116, 1987

    Google Scholar 

  56. Elliott RB, Reddy SN, Bibby NJ, Kida K, Dietary prevention of diabetes in the non-obese diabetic mouse. Diabetologia 31:62, 1988

    PubMed  CAS  Google Scholar 

  57. Wicker LS, Miller BJ, Mullen Y, Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes 35:855, 1986

    Article  PubMed  CAS  Google Scholar 

  58. Bendelac A, Carnaud C, Boitard C et al, Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates: requirement for both L3T4+and Lyt-2+T cells. J Exp Med 166:823, 1987

    Article  PubMed  CAS  Google Scholar 

  59. Harada M, Makino S, Immunological manipuluation of diabetes production in NOD mice. In: Tarui S, Tochino Y, Nonaka K (eds) Insulitis and type I diabetes: lesson from the NOD mouse. Academic Press, Tokyo, p 143, 1986

    Google Scholar 

  60. Ogawa M, Maruyama T, Hasegawa T, Kanaya T, Kobayashi F, Tochino Y, Uda H, The inhibitory effect of neonatal thymectomy on the incidence of insulitis in non-obese diabetic (NOD) mice. Biomed Res 6:103, 1985

    CAS  Google Scholar 

  61. Koike T, Itoh Y, Ishii T, Ito I, Takabayashi K, Matuyama M, Tomioka H, Yoshida S, Preventive effects of monoclonal anti-L3T4 antibody on the development of diabetes in NOD mice. Diabetes 36:539, 1987

    Article  PubMed  CAS  Google Scholar 

  62. Mori Y, Suko M, Okudaira H, Matsuba I, Tsuruoka A, Sasaki A, Yokovama H, Tanase T, Shida T, Nishimura M, Terada E, Ikeda Y. Preventive effects of cyclosporin on diabetes in NOD mice. Diabetologia 29:244, 1986

    Article  PubMed  CAS  Google Scholar 

  63. Miller BJ, Appel MC, O'Neil JJ, Wicker LS. Both the Lyt2+ and L3T4+T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol 140:52, 1988

    PubMed  CAS  Google Scholar 

  64. Thivolet C, Bendelac A, Bedossa P Bach J-F, Carnaud C, CD8+T cell homing to the pancreas in the nonobese diabetic mouse is CD4+ T cell-dependent. J Immunol 146:85, 1991

    PubMed  CAS  Google Scholar 

  65. Reich E-P, Sherwin RS, Kanagawa O, Janeway CA, An explanation for the protective effect of the MHC class II I-E molecule in murine diabetes. Nature 341:326, 1989

    Article  PubMed  CAS  Google Scholar 

  66. Haskins K, McDuffie M, Acceleration of diabetes in young NOD mice with a CD4 + islet-specific T cell clone. Science 249:1433, 1990

    Article  PubMed  CAS  Google Scholar 

  67. Elias D, Markovits D, Reshef T, van der Zee R, Cohen I, Induction and therapy of autoimmune diabetes in the nonobese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci USA 87:1576, 1990

    Article  PubMed  CAS  Google Scholar 

  68. Pankewycz O, Strom TB, Rubin-Kelley VE, Islet-infiltrating T cell clones from non-obese diabetic mice that promote or prevent accelerated onset diabetes. Eur J Immunol 21:873, 1991

    Article  PubMed  CAS  Google Scholar 

  69. Wang Y, Pontesilli O, Gill RG, La Rosa FG, Lafferty KJ, The role of CD4+ and CD8+ T cells in the destruction of islet grafts by spontaneously diabetic mice. Proc Natl Acad Sci USA 88:527, 1991

    Article  PubMed  CAS  Google Scholar 

  70. Vandenbark AA, Hashim G, Offner H, Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341:541, 1989

    Article  PubMed  CAS  Google Scholar 

  71. Shizuru JA, Taylor-Edwards C, Livingstone A, Fathman CG, Genetic dissection of T cell receptor Vβ gene requirements for spontaneous murine diabetes. J Exp Med 174:633, 1991

    Article  PubMed  CAS  Google Scholar 

  72. Sutherland DER, Silbey R, Xu XZ, Michael A, Srikanta S, Taub F, Najarian J, Goetz FC, Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type 1 diabetes. Trans Assoc Am Physicians 97:80, 1984

    PubMed  CAS  Google Scholar 

  73. Boitard C, Yasunami R, Dardenne M, Bach JF, T cell-mediated inhibiton of the transfer of autoimmune diabetes in NOD mice. J Exp Med 169:1669, 1989

    Article  PubMed  CAS  Google Scholar 

  74. Dardenne M, Lepault F, Bendelac A, Bach J-F, Acceleration of the onset of diabetes in NOD mice by thymectomy at weaning. Eur J Immunol 19:889, 1989

    Article  PubMed  CAS  Google Scholar 

  75. Harada M, Makino S, Promotion of spontaneous diabetes in non-obese diabetes-prone mice by cyclophosphamide. Diabetologia 27:604, 1984

    Article  PubMed  CAS  Google Scholar 

  76. Yasunami R, Bach J-F, Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur J Immunol 18:481, 1988

    Article  PubMed  CAS  Google Scholar 

  77. Jacob CO, Aiso S, Michie SA, McDevitt HO, Acha-Orbea H Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin-1. Proc Natl Acad Sci USA 87:968, 1990

    Article  PubMed  CAS  Google Scholar 

  78. Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J, Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell toxicity. J Immunol 139:4077, 1987

    PubMed  CAS  Google Scholar 

  79. Boitard C, Bendelac A, Richard MF, Carnaud C, Bach JF, Prevention of diabetes in nonobese diabetic mice by anti-I-A monoclonal antibodies: transfer of protection by splenic T cells. Proc Natl Acad Sci USA 85:9719, 1988

    Article  PubMed  CAS  Google Scholar 

  80. Reich E-P, Scaringe D, Yagi J, Sherwin RS, Janeway CA Prevention of diabetes in NOD mice by injection of autoreactive T-lymphocytes. Diabetes 38:1647, 1989

    Article  PubMed  CAS  Google Scholar 

  81. Carding SR, West J, Woods K, Bottomly K, Differential activation of cytokine genes in normal CD4-bearing cells is stimulus dependent. Eur J Immunol 19:231, 1989

    Article  PubMed  CAS  Google Scholar 

  82. Glimcher LH, Longo DL, Green I, Schwartz RH, Murine syngeneic mixed lymphocyte response. I. Target antigens are self la molecules. J Exp Med 154:1652, 1981

    Article  PubMed  CAS  Google Scholar 

  83. Yamashita U, Uno S, Nakamura H, The syngeneic mixed leucocyte reaction in mice. II. The I region control of suppressor T cell activity induced in the syngenetic mixed leucocyte reaction. J Immunol 128:1010, 1982

    PubMed  CAS  Google Scholar 

  84. Sano K, Fujisawa I, Abe R, Asanao Y, Tada T, MHC-restricted minimal regulatory circuit initiated by a class II-autoreactive T cell clone. J Exp Med 165:1284, 1987

    Article  PubMed  CAS  Google Scholar 

  85. Serreze DV, Leiter EH, Defective activation of T suppressor cell function in nonobese diabetic mice. J Immunol 140:3801, 1988

    PubMed  CAS  Google Scholar 

  86. Chandy KG, Charles AM, Kershnar A, Buckingham B, Waldeck N, Gupta S, Autologous mixed lymphocyte reaction in man. XV. Cellular and molecular basis of deficient autologous mixed lymphocyte response in insulin-dependent diabetes mellitus. J Clin Immunol 4:424, 1984

    Article  PubMed  CAS  Google Scholar 

  87. Baxter AG, Adams MA, Mandel TE, Comparison of high-and low-diabetes-incidence NOD mouse strains. Diabetes 38:1296, 1989

    Article  PubMed  CAS  Google Scholar 

  88. Satoh J, Oya K, Shintani S, Okano T, Toyota T, Suzuki R, Kumagui K, Biological response modifier prevents NOD mouse from IDDM (abstract). In: New horizons in animal models for autoimmune disease, Tokyo, Japan, p 66 A

  89. Philbrick WM, Maher SE, Bridgett MM, Bothwell A A recombination event in the 5′flanking region of the Ly-6C gene correlates with impaired expression in the NOD, NZB, and ST strains of mice. EMBO J 9:2485, 1990

    PubMed  CAS  Google Scholar 

  90. Herold KC, Montag AG, Meyer SM, Wojcikowski C, Fitch F, Expression of Ly-6C by T lymphocytes of NOD mice after CD3-complex stimulation. Diabetes 39:815, 1990

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashba, E.J., Reich, E.P., Janeway, C.A. et al. Type 1 diabetes mellitus: an imbalance between effector and regulatory T cells?. Acta Diabetol 30, 61–69 (1993). https://doi.org/10.1007/BF00578215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00578215

Key words

Navigation