Skip to main content
Log in

SCF-CI studies on the electronic ground state of water: Potential energy hypersurface and spectroscopic constants

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Large-scale Hartree-Fock self-consistent field calculations, employing extended Gaussian basis sets, and configuration interaction studies are performed to calculate the energy hypersurface of the electronic ground state of the water molecule and to investigate the accuracy requirements in view of the determination of molecular spectroscopic constants. From the calculated points on the hypersurface the theoretical equilibrium geometry, the force field through fourth order, the spectroscopic constants ωi, xij, αi as well as the Darling-Dennison and Fermi resonance constants are evaluated. The CI surface yields an equilibrium structure for H2O withr e = 0.9501 Å and αe=105.33 ° (r exp = 0.9572 Å and αexp = 104.52 °). The vibrational levels are obtained with a systematic error of about 2 percent and the rotational constants to about 1 percent compared to spectroscopic data. The relative energy maximum corresponding to the linear structure with α = π is calculated to be 11890cm−1, within the error limits of the values deduced from experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See e.g.: Water — a comprehensive treatise, Vol. 1, Franks, F. Ed. New York: Plenum Press 1972

    Google Scholar 

  2. Kraemer, W. P., Diercksen, G. H. F.: Astrophys. J.205, L97 (1976)

    Google Scholar 

  3. Kraemer, W. P., Hennig, P., Diercksen, G. H. F.: in preparation

  4. Diercksen, G. H. F., Kraemer, W. P., Roos, B. O.: Theoret. Chim. Acta (Berl.)36, 249 (1975)

    Google Scholar 

  5. Rosenberg, B. J., Shavitt, I.: J. Chem. Phys.63, 2162 (1975)

    Google Scholar 

  6. Rosenberg, B. J., Ermler, W. C., Shavitt, I.: J. Chem. Phys.65, 4072 (1976)

    Google Scholar 

  7. Popkie, H., Kistenmacher, H., Clementi, E.: J. Chem. Phys.59, 1325 (1973)

    Google Scholar 

  8. Meyer, W.: Intern. J. Quantum Chem.S5, 341 (1971)

    Google Scholar 

  9. Meyer, W.: J. Chem. Phys.58, 1017 (1973)

    Google Scholar 

  10. Almlöf, J., Lindgren, L., Tegenfeldt, J.: J. Mol. Struct.14, 427 (1972)

    Google Scholar 

  11. Ermler, W. C., Kern, C. W.: J. Chem. Phys.55, 4851 (1971)

    Google Scholar 

  12. Krohn, B. J., Ermler, W. C., Kern, C. W.: J. Chem. Phys.60, 22 (1974)

    Google Scholar 

  13. Diercksen, G. H. F., Kraemer, W. P.: MUNICH Molecular Program System — Reference Manual, Special Technical Report, Max-Planck-Institut für Physik und Astrophysik (to be published)

  14. Roos, B. O.: Chem. Phys. Letters15, 153 (1972)

    Google Scholar 

  15. Roos, B. O., Siegbahn, P. E. M., in: Modern theoretical chemistry, Vol. 3, SchaeferIII, H. F., Ed. New York: Plenum Publ. Corp. (to be published)

  16. Duijnefeldt, F. B. v.: IBM Res. J. 945 (1971)

  17. Swanstrøm, P., Kraemer, W. P., Diercksen, G. H. F.: Theoret. Chim. Acta (Berl.)44, 109 (1977)

    Google Scholar 

  18. Davidson, E. R., in: The world of quantum chemistry, p. 17, Daudel, R., Pullman, B. Eds. Dordrecht, Holland: Reidel 1974; Langhoff, S. R., Davidson, E. R.: Intern. J. Quantum Chem.8, 61 (1974)

    Google Scholar 

  19. Hoy, A. R., Mills, I. M., Strey, G.: Mol. Phys.24, 1265 (1972)

    Google Scholar 

  20. Wilson, E. B., Howard, J. B.: J. Chem. Phys.4, 260 (1936)

    Google Scholar 

  21. Watson, J. K. G.: Mol. Phys.15, 479 (1968)

    Google Scholar 

  22. Nielsen, H. H.: Rev. Mod. Phys.23, 90 (1951); Handbuch der Physik, Flügge, S., Ed., Vol. 37/1. Berlin: Springer 1959

    Google Scholar 

  23. Mills, I. M.: Molecular spectroscopy, modern research, Rao, K. N., Matthews, C. W., Eds. Academic Press 1972; Theoretical chemistry, Vol. 1. Specialist Periodical Report of the Chemical Society (1974)

  24. Benedict, W. S., Gailar, N., Plyler, E. K.: J. Chem. Phys.24, 1139 (1956)

    Google Scholar 

  25. Hennig, P., Strey, G.: to be published

  26. Flaud, J. M., Camy-Peyret, C.: J. Mol. Spectry.51, 142 (1974)

    Google Scholar 

  27. Hougen, J. T., Bunker, P. R., Johns, J. W. C.: J. Mol. Spectry.34, 136 (1970)

    Google Scholar 

  28. Bunker, P. R., Stobe, J. M. R.: J. Mol. Spectry.41, 310 (1972)

    Google Scholar 

  29. Sorbie, K. S., Murrell, J. N.: Mol. Phys.29, 1387 (1975)

    Google Scholar 

  30. Bucknell, M. G., Handy, N. C.: Mol. Phys.28, 777 (1974)

    Google Scholar 

  31. Whitehead, R. J., Handy, N. C.: J. Mol. Spectry.55, 356 (1975)

    Google Scholar 

  32. Carney, G. D., Kern, C. W.: Intern. J. Quantum Chem.9, 317 (1975)

    Google Scholar 

  33. Whitehead, R. J., Handy, N. C.: J. Mol. Spectry.59, 459 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennig, P., Kraemer, W.P., Diercksen, G.H.F. et al. SCF-CI studies on the electronic ground state of water: Potential energy hypersurface and spectroscopic constants. Theoret. Chim. Acta 47, 233–248 (1978). https://doi.org/10.1007/BF00577165

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00577165

Key words

Navigation