Skip to main content
Log in

Apolipoprotein AI-CIII-AIV genetic polymorphisms and coronary heart disease in type 2 diabetes mellitus

  • Originals
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The aim of this study was to verify whether or not the increased prevalence of coronary heart disease (CHD) commonly observed in patients with type 2 diabetes mellitus is related to a genetic background involving restriction fragment length polymorphisms (RFLPs) of apolipoproteins. On the basis of a case-control design, 62 type 2 diabetic patients with CHD (confirmed by clinical history and electrocardiogram) and 62 age- and sexmatched diabetic subjects without CHD were enrolled. In each of them RFLPs of the apolipoprotein CIII gene (S1 or S2 allele) and AI promoter region (A or G allele), together with fasting plasma lipids and apolipoproteins levels, were assessed. The rare S2 allele was found significantly (P=0.05) more frequently in patients with CHD, and its related S1S2 genotype was associated with higher plasma levels of total cholesterol (P=0.01), triglycerides (P=0.007) and apo B (P=0.001) than the S1S1 genotype. The A allele was more frequent (P=0.004) in patients without CHD and was associated with lower plasma cholesterol (P=0.0001), low-density lipoprotein (LDL)-cholesterol (P=0.0001) and apo B (P=0.005). The S1/A haplotype was more frequent (P=0.05) in patients without CHD and was associated with the lowest plasma lipid levels. These results suggest that genetic factors, related to the apo AI-CIII-AIV gene cluster, could play a role in the development of CHD in type 2 diabetic patients, probably through modification of their plasma lipid pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarrett RJ, Type 2 (non insulin-dependent) diabetes mellitus and coronary heart disease — chicken, egg or neither? Diabetologia 26:99–102, 1984

    Article  PubMed  CAS  Google Scholar 

  2. Ford ES, De Stefano F, Risk factors for mortality from all causes and from coronary heart disease among persons with diabetes. Finding from the Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Epidemiol 133:1220–1230, 1991

    PubMed  CAS  Google Scholar 

  3. Standl E, Stiegler H, Janka HV, Mehnert H, Risk profiles of macrovascular disease in diabetes mellitus. Diabetes Metab 14:505–511, 1988

    Google Scholar 

  4. Bierman EL, Atherogenesis in diabetes. Atherosclerosis Thromb 12:647–650, 1991

    Google Scholar 

  5. Laakso M, Voutilainen E, Pyorala K, Sarlund H, Association of low HDL and HDL2 cholesterol with coronary heart disease in non insulin-dependent diabetics. Arteriosclerosis 5:653–658, 1985

    PubMed  CAS  Google Scholar 

  6. Trembath RC, Thomas DJB, Hendra TJ, Yudkin JS, Galton DJ, Deoxyribonucleic acid polymorphism of the apoprotein AI-CIII-AIV gene cluster and coronary heart disease in non insulin-dependent diabetes. Br Med J 294:1577–1578, 1987

    Article  CAS  Google Scholar 

  7. Renard E, Dupuy AM, Monnier L, Crastes de Paulet A, DNA restriction polymorphisms of the apolipoprotein AI-CIII-AIV gene cluster: a genetic determinant of atherosclerosis in type 2 (non insulin-dependent) diabetes mellitus. Diabetic Med 8:354–360, 1991

    Article  PubMed  CAS  Google Scholar 

  8. Karathanasis SK, Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII and AIV genes. Proc Natl Acad Sci USA 82:8340–8344, 1985

    Article  Google Scholar 

  9. Aalto-Setala K, Kontula K, Nieminen M, Nikkila E, DNA polymorphisms of apolipoprotein A-I/C-III and insulin genes in familial hypertriglyceridemia and coronary heart disease. Atherosclerosis 66:145–152, 1987

    Article  PubMed  CAS  Google Scholar 

  10. Ordovas JM, Civeira F, Genest J Jr, Craig S, Robbins AH, Meade T, Restriction fragment length polymorphisms of the apolipoprotein A-I, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and coronary artery disease. Atherosclerosis 87:75–86, 1991

    Article  PubMed  CAS  Google Scholar 

  11. Tyabjaerg-Hansen A, Nordestgaard G, Gerdes LU, Faergeman O, Humphries SE, Genetic markers in the apo AI-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. Atherosclerosis 100:157–169, 1993

    Article  Google Scholar 

  12. Rees A, Shoulders CC, Stocks J, Galton DJ, Baralle FE, DNA polymorphism adjacent to human apoprotein A-I gene: relation to hypertriglyceridaemia. Lancet 1:444–446, 1983

    Article  PubMed  CAS  Google Scholar 

  13. Henderson HE, Landon SV, Michie J, Berger GMB, Association of a DNA polymorphism in the apolipoprotein CIII gene with diverse hyperlipidaemic phenotypes. Hum Genet 75:62–67, 1987

    PubMed  CAS  Google Scholar 

  14. Paulweber B, Friedl W, Krempler F, Humphries SE, Sandhofer F, Genetic variation in the apolipoprotein AI-CIII-AIV gene cluster and coronary heart disease. Atherosclerosis 73:125–128, 1988

    Article  PubMed  CAS  Google Scholar 

  15. Anderson RA, Burns TL, Lee J, Swenson D, Bristow JL, Restriction fragment length polymorphisms associated with abnormal lipid levels in an adolescent population. Atherosclerosis 77:227–230, 1989

    Article  PubMed  CAS  Google Scholar 

  16. Rigoli L, Cucinotta D, Cocozza S, Di Benedetto A, Romano G, Ferrara A, Pianese L, Raimondo G, Squadrito G, Riccardi G, A genetic polymorphism of the apolipoprotein AI-CIII gene cluster is associated with coronary heart disease in non insulindependent diabetes mellitus. Diabetes Nutr Metab 7:71–75, 1994

    Google Scholar 

  17. Sastry KN, Seedorf U, Karathanasis SK, Differentcis-acting DNA elements control expression of the human apolipoprotein AI gene in different cell types. Mol Cell Biol 8:605–614, 1988

    PubMed  CAS  Google Scholar 

  18. Pagani F, Sidoli A, Giudici GA, Barenghi L, Vergani C, Baralle FE, Human apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res 31:1371–1377, 1990

    PubMed  CAS  Google Scholar 

  19. Jeenah M, Kessling A, Miller N, Humphries S, G to A substitution in the promoter region of the apolipoprotein AI gene is associated with elevated serum apolipoprotein AI and high density lipoprotein cholesterol concentrations. Mol Biol Med 7:233–241, 1990

    PubMed  CAS  Google Scholar 

  20. Hayase PH, Rosseneu M, Robinson D, Van Bervliet JP, Deslypere JP, Humphries SE, Polymorphisms in the apolipoprotein (apo) AI-CIII-AIV gene cluster: detection of genetic variation determining plasma apo AI, apo CIII and apo AIV concentrations. Hum Genet 88:439–446, 1992

    Article  Google Scholar 

  21. The ‘Minnesota Code’ for ECG classifications. Adaption to CR-leads and modification of the code for ECGs recorded during and after exercise. Acta Med Scand Suppl 481, 1967

  22. WHO Study Group, Diabetes Mellitus. (WHO Technical Report Series 727) World Health Organisation, Geneva, 1985

    Google Scholar 

  23. Friedewald WT, Levy RI, Fredrickson DS, Estimation of the concentration of low-density-lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502, 1972

    PubMed  CAS  Google Scholar 

  24. WHO Expert Committee, Arterial Hypertension. (WHO Technical Report Series 628) World Health Organisation, Geneva, 1978

    Google Scholar 

  25. Sambrook J, Fritsh EF, Maniatis T, Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, 1989

    Google Scholar 

  26. SAS/STAT User's Guide: Statistics Version, Release 6.03 edition. USA NC SAS Institute, 1989

  27. Haviland MB, Kessling AM, Davignon J, Sing CF, Estimation of Hardy-Weinberg and pairwise disequilibrium in the apolipoprotein AI-CIII-AIV gene cluster. Am J Hum Genet 49:350–365, 1991

    PubMed  CAS  Google Scholar 

  28. Hill WG, Estimation of linkage disequilibrium in ramdomly mating populations. Heredity 33:229–239, 1974

    PubMed  CAS  Google Scholar 

  29. Thompson EA, Deeb S, Walker D, The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI-CIII apolipoprotein genes. Am J Hum Genet 42:113–124, 1988

    PubMed  CAS  Google Scholar 

  30. Marasco O, Melina F, Mele E, Quaresima B, Zincone A, Focarelli E, Linkage disequilibrium of three polymorphic RFLP markers in the apolipoprotein AI-CIII gene cluster on chromosome 11. Hum Genet 91:169–174, 1993

    Article  PubMed  CAS  Google Scholar 

  31. Brunzel JD, Hazzard WR, Motulsky AG, Bierman EL, Evidence for diabetes and genetic forms of hypertriglyceridemia as independent entities. Metabolism 24:1115–1121, 1975

    Article  Google Scholar 

  32. Humphries SE, DNA polymorphisms of the apolipoprotein genes — their use in the investigation of the genetic component of hyperlipidaemia and atherosclerosis. Atherosclerosis 72:89–108, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigoli, L., Raimondo, G., Di Benedetto, A. et al. Apolipoprotein AI-CIII-AIV genetic polymorphisms and coronary heart disease in type 2 diabetes mellitus. Acta Diabetol 32, 251–256 (1995). https://doi.org/10.1007/BF00576258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576258

Key words

Navigation