Skip to main content
Log in

Electrical conductivity of CuSn5Br11 in solid and molten states

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity of solid and molten CuSn5Br11 and SnBr2 compounds was determined using classical a.c. bridge techniques and sealed capillary-type cells with platinum electrodes. The experiments allow us to suspect the solid compound CuSn5Br11 to be a fast Cu+ ion conductor. The specific conductance of the molten compound is nearly the same as that of the molten stannous bromide, so its conduction can be regarded as being mostly due to motion of the anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wojakowska,J. Therm. Anal. 35 (1989) 91.

    Google Scholar 

  2. T. Takahashi, O. Yamamoto andM. Takahashi,J. Solid State Chem. 21 (1977) 37.

    Google Scholar 

  3. B. K. Verma, O. P. Srivastava andH. B. Lal,Phys. Status Solidi (a) 64 (1981) 467.

    Google Scholar 

  4. G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey Jr andS. K. Singer,J. Phys. Chem. Ref. Data 6 (1977) 409.

    Google Scholar 

  5. G. Jander andK. Brodersen,Z. Anorg. Allg. Chem. 264 (1951) 57.

    Google Scholar 

  6. G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz andR. P. T. Tomkins, “Molten Salts”, Vol. 1. “Electrical Conductance, Density, and Viscosity Data”, Nat. Stand. Ref. Data Ser. No. 15 (National Bureau of Standards, USA, 1968) (Russian translation Izd. “Khimiya”, Leningrad, 1971) p. 67.

    Google Scholar 

  7. C. Tubandt, “Landolt-Börnstein”, Erg.-Bd. II (Springer, Berlin, 1931) p. 1042.

    Google Scholar 

  8. J. Geiler, PhD thesis, University of Halle, Germany (1928).

    Google Scholar 

  9. C. Tubandt, in “Handbuch der Experimentalphysik”, Vol. 12 (Akademische Verlagsgesellschaft, Leipzig, 1933) Part 1.

    Google Scholar 

  10. J. B. Wagner andC. Wagner,J. Chem. Phys. 26 (1957) 1597.

    Google Scholar 

  11. A. Goldmann,Phys. Status Solidi (b) 81 (1977) 9.

    Google Scholar 

  12. J. N. Bradley andP. D. Greene,Trans. Faraday Soc. 62 (1966) 2069.

    Google Scholar 

  13. Idem, ibid. 63 (1967) 424.

    Google Scholar 

  14. T. Matsui andJ. B. Wagner Jr,J. Electrochem. Soc. 124 (1977) 937.

    Google Scholar 

  15. T. Takahashi, O. Yamamoto, S. Yamada andS. Hayashi,ibid. 126 (1979) 1654.

    Google Scholar 

  16. R. Kanno, Y. Takeda, M. Imura andO. Yamamoto,J. Appl. Electrochem. 12 (1982) 681.

    Google Scholar 

  17. T. Matsui andJ. B. Wagner Jr,J. Electrochem. Soc. 124 (1977) 941.

    Google Scholar 

  18. R. Kanno, Y. Takeda, Y. Maskayama, O. Yamamoto andT. Takahashi,Solid State Ionics 11 (1983) 221.

    Google Scholar 

  19. V. F. Vybornov, V. S. Shvetsov, V. V. Ivanov andA. N. Kolomoets,Izv. Akad. Nauk. SSSR Neorg. Mater. 20 (1984) 1413.

    Google Scholar 

  20. O. P. Srivastava, A. K. Srivastava andH. B. Lal,J. Mater. Sci. 20 (1985) 1763.

    Google Scholar 

  21. V. S. Shvetsov, V. F. Vybornov andV. V. Ivanov,Elektrokhimiya 18 (1982) 986.

    Google Scholar 

  22. V. S. Shvetsov andV. F. Vybornov,ibid. 19 (1983) 942.

    Google Scholar 

  23. T. Takahashi, O. Yamamoto andA. Sawai,J. Appl. Electrochem. 8 (1978) 161.

    Google Scholar 

  24. N. Jouini, L. Guen andM. Tournoux,Rev. Chim. Mineral. 21 (1984) 335.

    Google Scholar 

  25. G. Herrmann,Z. Anorg. Chem. 71 (1911) 257.

    Google Scholar 

  26. M. G. Alexander andB. Riley,Mater. Res. Bull. 19 (1984) 1527.

    Google Scholar 

  27. P. H. Fourcroy, F. Thevet andJ. Rivet,Comp. Rend, Acad. Sci. Ser. II 305 (1987) 1069.

    Google Scholar 

  28. E. P. Mensel,Ber. Deutsch. Chem. Ges. 3 (1870) 123.

    Google Scholar 

  29. L. Suchow andG. R. Pond,J. Amer. Chem. Soc. 75 (1953) 5242.

    Google Scholar 

  30. N. Kimura, Y. Niizeki andO. Takagi,Tohoku Kogyo Daigaku Kiyo 1 (1984) 169.

    Google Scholar 

  31. N. Kimura andY. Niizeki,Solid State Ionics 3–4 (1981) 385.

    Google Scholar 

  32. T. A. Kuku,ibid. 20 (1986) 217.

    Google Scholar 

  33. J. Andersson,Acta Chem. Scand. A29 (1975) 956.

    Google Scholar 

  34. K. G. Weil,NATO ASI Ser. c 130 (1984) 255.

    Google Scholar 

  35. W. Bues, M. Somer andW. Brochner,Z. Anorg. Allg. Chem. 435 (1977) 119.

    Google Scholar 

  36. J. M. R. Clarke andC. Solomons,J. Chem. Phys. 47 (1967) 1823.

    Google Scholar 

  37. V. N. Lyubimov, V. A. Fedorov, V. M. Grankin andP. P. Semiannikov,Izv. Sib. Otd. Akad. Nauk SSSR 12 (1970) 24.

    Google Scholar 

  38. J. G. Powles,J. Phys. C 8 (1975) 895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojakowska, A., Kundys, E. Electrical conductivity of CuSn5Br11 in solid and molten states. J Mater Sci 25, 3780–3784 (1990). https://doi.org/10.1007/BF00575418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00575418

Keywords

Navigation