Skip to main content
Log in

Development of the cranium ofNeoceratodus forsteri, with a discussion of the suspensorium and the opercular apparatus in Dipnoi

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The ontogeny of the cranium of Dipnoi is restudied. The investigation especially refers to the basic components of the dipnoan cranium and several functional and developmental aspects of the structure of the larval skull ofNeoceratodus. There are fundamental differences even in the early development and composition of the chondrocranium ofNeoceratodus and Lepidosirenidae. This result, and comparison with several osteichthyans and Tetrapoda, requires a reinterpretation of the components of the dipnoan skull base. The pterygoid processes are not reduced, but incorporated into the cranial base early in ontogeny. The characteristic elongate trabecular rods, which in Gnathostomata usually bridge the ethmoidal plate and the orbito-temporal base of the chondrocranium, are much delayed in development inNeoceratodus, or even seem absent inLepidosiren andProtopterus. Accordingly, in Dipnoi no typical basitrabecular junction is formed in early ontogeny. Instead, the pars quadrata is fused to the mesodermal basis cranii posteriorly. InNeoceratodus a mesially directed basal process of the palatoquadrate is recognizable, which topographically corresponds to the basal process of Urodela and the pseudobasal process of anuran larvae. The ethmosphenoid region of the dipnoan skull also develops quite differently. In Lepidosirenidae, the palatoquadrates are interconnected anteriorly by a distinct commissura palatoquadrati, whereas inNeoceratodus a continuous planum ethmoidale (“trabecular plate”) is formed. The primary embryonic quadrato-trabecular connection persists as a commissura quadratocranialis anterior below the foramen opticum, at the root of the ectethmoid process. The formation of the skull base in living Amphibia appears to provide the best model for comparison, though it is difficult to propose any undisputable shared derived character states of the cranium of Dipnoi and Tetrapoda beyond this similarity. A similar difficulty presents the phylogenetic interpretation of the hyoid arch. In contrast to the absence of any dorsal hyoid arch elements inLepidosiren, the small hyomandibula ofNeoceratodus is surprisingly complete. In larvae it consists of a laterohyale, an epihyal part, and a processus symplecticus. A stylohyal cartilage is present, which forms rather late in ontogeny. The major chondral components of the hyoid arch are thus comparable to those of living Actinopterygii, except that a distinct symplecticum is not separated off, the components are relatively smaller, and they do not ossify. In view of the early-immobilized palatoquadrate, the hyomandibula ofNeoceratodus has no suspensorial function, but represents part of an opercular hinge and opening mechanism. The hamuloquadrate knob at the posterior face of the quadrate body is comparable to the processus hyoideus in some Urodela. It provides a pivoting joint for the ceratohyale, and therefore functions in buccal expansion. The closed spiracular canals include mechanoreceptive lateral line organs, which probably represent proprioreceptive organs for adjustment of mandibular, hyoid, and opercular movements. It is concluded that considerable differences between the skull architecture of Dipnoi and other Osteognathostomata (Teleostomi) can be assigned to the fact that palatoquadrate and trabecular anlagen fail to separate, resulting in a dramatic and highly adaptive change of palatoquadrate development in early ontogeny. Though these differences include several characters that suggest a plagiostomate condition of the jaw apparatus, this can be explained as a secondary acquisition. The multitude of retained plesiomorphies observed in the cranium of Dipnoi do not exclude a sister group-relationship to Tetrapoda. However, the ancestral osteognathostome suspensorial pattern still presents a problem of interpretation, for we lack a detailed survey of the development and significance of different quadrato-neurocranial connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamicka P, Ahnelt H (1976) Beiträge zur funktionellen Analyse und zur Morphologie des Kopfes vonLatimeria chalumnae. Ann Naturhist Mus Wien 80:251–271

    Google Scholar 

  • Agar WE (1906a) The development of the skull and visceral arches inLepidosiren andProtopterus. Trans R Soc, Edinburgh 45:49–64

    Google Scholar 

  • Agar WE (1906b) The spiracular gill cleft inLepidosiren andProtopterus. Anat Anz 28:298–304

    Google Scholar 

  • Ahlberg PE (1991) A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zool J Linn Soc London 103:241–287

    Google Scholar 

  • Allis EP (1914a) The pituitary fossa and trigemino-facialis chamber inCeratodus forsteri. Anat Anz 46:625–637

    Google Scholar 

  • Allis EP (1914b) The pseudobranchial and carotid arteries inCeratodus forsteri. Anat Anz 46:638–648

    Google Scholar 

  • Allis EP (1915) The homologies of the hyomandibula of the gnathostome fishes. J Morphol 26:563–624

    Google Scholar 

  • Allis EP (1930) Concerning the subpituitary space and the antrum petrosum laterale in the Dipnoi, Amphibia and Reptilia. Acta Zool Stockholm 11:1–38

    Google Scholar 

  • Arratia G, Schultze HP (1990) The urohyal: development and homology within osteichthyans. J Morphol 203:247–282

    Google Scholar 

  • Arratia G, Schultze HP (1991) Palatoquadrate and its ossifications: development and homology within osteichthyans. J Morphol 208:1–81

    Google Scholar 

  • Barry MA, Bennett VL (1989) Specialized lateral line receptor systems in elasmobranchs: the spiracular organs and Vesicles of Savi. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 591–606

    Google Scholar 

  • Barry MA, Boord RL (1984) The spiracular organ of sharks and skates: anatomical evidence indicating a mechanoreceptive role. Science 226:990–992

    Google Scholar 

  • Bartsch P (1993) Development of the snout of the Australian lung-fishNeoceratodus forsteri (Krefft 1870), with special reference to cranial nerves. Acta Zool Stockholm 74:15–29

    Google Scholar 

  • Beer GR de (1926) Studies on the vertebrate head II. The orbitotemporal region of the skull. Q J Microsc Sci 70:263–370

    Google Scholar 

  • Beer GR de (1931) The development of the skull ofScyllium (Scylliorhinus) canicula L. Q J Microsc Sci 74:591–644

    Google Scholar 

  • Beer GR de (1937) The development of the vertebrate skull. Oxford University Press, Oxford

    Google Scholar 

  • Bemis WE (1984) Paedomorphosis and the evolution of the Dipnoi. Paleobiology 10:293–307

    Google Scholar 

  • Bemis WE (1986) Feeding system of living Dipnoi: anatomy and function. J Morphol Suppl 1:249–275

    Google Scholar 

  • Bemis WE, Lauder GV (1986) Morphology and function of the feeding apparatus of lungfishLepidosiren paradoxa (Dipnoi). J Morphol 187:81–108

    Google Scholar 

  • Bemis WE, Northcutt GR (1991) Innervation of the basicranial muscle ofLatimeria chalumnae. Environ Biol Fishes 32:147–158

    Google Scholar 

  • Bertmar G (1959) On the ontogeny of the chondral skull of Characidae, with a discussion on the chondrocranial base and the visceral chondrocranium in fishes. Acta Zool Stockholm 40:203–364

    Google Scholar 

  • Bertmar G (1963) The trigemino-facialis chamber, the cavum epiptericum and the cavum orbitonasale, three serially homologous extracranial spaces in fishes. Acta Zool Stockholm 44:329–344

    Google Scholar 

  • Bertmar G (1966) The development of skeleton, blood-vessels and nerves in the Dipnoan snout, with a discussion on the homology of the Dipnoan posterior nostrils. Acta Zool Stockholm 47:82–150

    Google Scholar 

  • Bjerring HC (1970) Nervus tenuis, a hitherto unknown cranial nerve of the fourth metamere. Acta Zool Stockholm 51:107–114

    Google Scholar 

  • Bjerring HC (1971) The nerve supply to the second metamere basicranial muscle in osteolepiform vertebrates, with some remarks on the basic composition of the endocranium. Acta Zool Stockholm 52:189–225

    Google Scholar 

  • Bjerring HC (1977) A contribution to structural analysis of the head of craniate animals. Zool Scr 6:127–183

    Google Scholar 

  • Bjerring HC (1991) The question of a vomer in brachiopterygian fish. Acta Zool Stockholm 72:223–232

    Google Scholar 

  • Bridge TW (1898) On the morphology of the skull in the ParaguayanLepidosiren and in other Dipnoids. Trans Zool Soc London 14:325–376

    Google Scholar 

  • Brien P, Bouillon J (1959) Ethologie des larves deProtopterus dolloi Blgr. et étude de leurs organes respiratoires. Ann Mus R Congo Belge Tervuren Sér 8 Sci Zool 71:23–74

    Google Scholar 

  • Campbell KSW, Barwick RE (1984) The choana, maxillae, premaxillae and anterior bones of early dipnoans. Proc Linn Soc NSW 107:147–170

    Google Scholar 

  • Campbell KSW, Barwick RE (1986) Paleozoic lungfishes — a review. J Morphol Suppl 1:93–131

    Google Scholar 

  • Campbell KSW, Barwick RE (1990) Palaeozoic dipnoan phylogeny: functional complexes and evolution without parsimony. Paleobiology 16:143–169

    Google Scholar 

  • Carroll RL (1980) The hyomandibular as a supporting element in the skull of primitive tetrapods. In: Panchen AL (ed) The terrestrial environment and the origin of land vertebrates. Sytematics association special vol 15. Academic Press, London New York, pp 293–317

    Google Scholar 

  • Chang MM, Yu X (1984) Structure and phylogenetic significance ofDiabolichthys speratus gen. et spec. nov., a new dipnoan-like form from the Lower Devonian of eastern Yunnan, China. Proc Linn Soc NSW 107:171–184

    Google Scholar 

  • Dingerkus G, Uhler L (1977) Enzyme clearing of Alcian blue stained small vertebrates for demonstration of cartilage. Stain Technol 52:229–232

    Google Scholar 

  • Dollo L (1895) La phylogénie des Dipneustes. Bull Soc Belge Geol Paleontol Hydrol 9:79–128

    Google Scholar 

  • Drüner L (1901) Studien zur Anatomie der Zungenbein-, Kiemenbogen-und Kehlkopfmuskulatur der Urodelen I. Theil. Zool Jahrb Anat Ontog 15:435–622

    Google Scholar 

  • Drüner L (1904) Studien zur Anatomie der Zungenbein-, Kiemenbogen-und Kehlkopfmusculatur der Urodelen II. Theil. Zool Jahrb Anat Ontog 19:361–690

    Google Scholar 

  • Edgeworth FH (1923) On the quadrate inCrytobranchus, Menopoma andHynobius. J Anat London 57:238–244

    Google Scholar 

  • Edgeworth FH (1925) On the autostylism of Dipnoi and Amphibia. J Anat London 59:225–264

    Google Scholar 

  • Edgeworth FH (1926) On the hyomandibula of Selachii, Teleostomi andCeratodus. J Anat London 60:173–193

    Google Scholar 

  • Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Forster-Cooper C (1937) The Middle Devonian fish fauna of Achanarras:Dipterus. Trans R Soc Edinburgh 59:223–240

    Google Scholar 

  • Fox H (1954) Development of the skull and associated structures in amphibia with special reference to the urodeles. Trans Zool Soc London 28:241–304

    Google Scholar 

  • Fox H (1959) A study of the development of the head and pharynx of the larval urodeleHynobius and its bearing on the evolution of the vertebrate head. Phil Trans R Soc (B) 242:151–205

    Google Scholar 

  • Fox H (1965) Early development of the head and pharynx ofNeoceratodus with a consideration of its phylogeny. Proc Zool Soc London 146:470–554

    Google Scholar 

  • Fritzsch B (1987) Inner ear of the coelacanth fishLatimeria has tetrapod affinities. Nature 327:153–154

    Google Scholar 

  • Fritzsch B, Sonntag R, Dubuc R, Ohta Y, Grillner S (1990) Organization of the six motor nuclei innervating the ocular muscles in lamprey. J Comp Neurol 294:491–506

    Google Scholar 

  • Fuchs H (1915) Über den Bau und die Entwicklung des Schädels derChelone imbricata. Ein Beitrag zur Entwicklungsgeschichte und vergleichenden Anatomie des Wirbeltierschädels. 1. Das Primordialskelett des Neurocraniums und des Kieferbogens. Voeltzkow Reise Ostafr (1903–1905), 5:1–325

    Google Scholar 

  • Fürbringer K (1904) Beiträge zur Morphologie des Skeletes der Dipnoer, nebst Bemerkungen über Pleuracanthiden, Holocephalen und Squaliden. Denkschr Med Naturwiss Ges Jena 4:423–510

    Google Scholar 

  • Fürbringer M (1897) Ueber die spino-occipitalen Nerven der Selachier und Holocephalen. Festschrift zum siebenzigsten Geburtstag von Carl Gegenbaur 3:351–788, Leipzig

    Google Scholar 

  • Gardiner BG (1984) The relationships of palaeoniscid fishes, a review based on new specimens ofMimia andMoythomasia from the Upper Devonian of Australia. Bull Brit Mus (Geol) 37:173–428

    Google Scholar 

  • Gaupp E (1906) Die Entwickelung des Kopfskelettes. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwickelungslehre der Wirbelthiere. Bd. 3. Fischer, Jena, pp 573–874

    Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. MacMillan, London

    Google Scholar 

  • Greenwood PH (1958) Reproduction in the East African lung-fishProtopterus aethiopicus Heckel. Proc Zool Soc London 130:547–567

    Google Scholar 

  • Greil A (1908) Entwickelungsgeschichte des Kopfes und des Blutgefäßsystemes vonCeratodus forsteri. I. Gesammtentwikkelung bis zum Beginn der Blutzirkulation. Denkschr Med Naturwiss Ges Jena 4:661–934

    Google Scholar 

  • Greil A (1913) Entwickelungsgeschichte des Kopfes und des Blutgefäßsystemes vonCeratodus forsteri. II. Die epigenetischen Erwerbungen während der Stadien 39–48. Denkschr Med Naturwiss Ges Jena 4:935–1492

    Google Scholar 

  • Günther A (1871) Description ofCeratodus, a genus of ganoid fishes, recently discovered in rivers of Queensland, Australia. Phil Trans R Soc London 161:511–571

    Google Scholar 

  • Hammarberg F (1937) Zur Kenntnis der ontogenetischen Entwicklung des Schädels vonLepidosteus platystomus. Acta Zool Stockholm 18:209–337

    Google Scholar 

  • Hanken J, Klymanowsky MW, Summers DH, Seufert DW, Ingebrigten N (1992) Cranial ontogeny in the direct-developing frog,Eleutherodactylus coqui (Anura, Leptodactylidae), analyzed using whole-mount immunohistochemistry. J Morphol 211:95–118

    Google Scholar 

  • Hennig W (1983) Stammesgeschichte der Chordaten. Fortschritte in der Zoologischen Systematik und Evolutionsforschung 2. Parey, Hamburg Berlin

    Google Scholar 

  • Hörstadius S (1950) The neural crest, its properties and derivatives in light of experimental research. Oxford University Press, Oxford

    Google Scholar 

  • Hörstadius S, Sellman SE (1946) Experimentelle Untersuchungen über die Determination des knorpeligen Kopfskelettes bei Urodelen. Nova Acta Soc Sci Ups Ser 4 13:1–170

    Google Scholar 

  • Hofer H (1948) Zur Kenntnis der Suspensionsformen des Kieferbogens und deren Zusammenhänge mit dem Bau des knöchernen Gaumens und mit der Kinetik des Schädels bei den Knochenfischen. Zool Jahrb Anat Ontog Tiere 69:321–404

    Google Scholar 

  • Holmgren N (1940) Studies on the head in fishes. Embryological, morphological and phylogenetical studies. Part I.: development of the skull in sharks and rays. Acta Zool Stockholm 21:51–267

    Google Scholar 

  • Holmgren N (1943) Studies on the head of fishes. An embryological, morphological and phylogenetical study. Part IV.: general morphology of the head in fish. Acta Zool Stockholm 24:1–188

    Google Scholar 

  • Holmgren N (1949) Contributions to the question of the origin of tetrapods. Acta Zool Stockholm 30:459–484

    Google Scholar 

  • Holmgren N, Pehrson T (1949) Some remarks on the ontogenetical development of the sensory lines of the cheek in fishes and amphibians. Acta Zool Stockholm 30:249–314

    Google Scholar 

  • Holmgren N, Stensiö E (1936) Kranium und Visceralskelett der Akranier, Cyclostomen und Fische. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere 4. Urban and Schwarzenberg, Berlin Wien, pp 233–500

    Google Scholar 

  • Huxley TH (1876) Contributions to morphology. Ichthyopsida. No. 1. OnCeratodus forsteri with observations on the classification of fishes. Proc Zool Soc London 1876:24–59

    Google Scholar 

  • Iordansky NN (1990) Evolution of complex adaptations. The jaw apparatus of amphibians and reptiles (in Russian with English abstract). Nauka, Moscow

    Google Scholar 

  • Jarvik E (1954) On the visceral skeleton ofEusthenopteron with a discussion of the parasphenoid and palatoquadrate in fishes. K Sven Vetenskapsacad Handl 5:1–104

    Google Scholar 

  • Jarvik E (1967) On the structure of the lower jaw in dipnoans: with a description of an early Devonian dipnoan from Canada,Melanognathus canadensis gen. et spec. nov. J Linn Soc (Zool) 47:155–184

    Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates. Academic Press, London

    Google Scholar 

  • Kemp A (1977) The pattern of tooth plate formation in the Australian lungfishNeoceratodus forsteri Krefft. Zool J Linn Soc 60:223–258

    Google Scholar 

  • Kemp A (1982) The embryological development of the Queensland lungfish,Neoceratodus forsteri (Krefft). Mem Queensl Mus 20:553–597

    Google Scholar 

  • Kemp A (1986) The biology of the Australian lungfish,Neoceratodus forsteri (Krefft 1870). J Morphol Suppl 1:181–198

    Google Scholar 

  • Kerr JG (1909) Normal plates of the development ofLepidosiren paradoxa andProtopterus annectens. In: Keibel F (ed) Normentafeln zur Entwicklungsgeschichte der Wirbeltiere, 10. Fischer, Jena

    Google Scholar 

  • Kesteven HL (1931) The skull ofNeoceratodus forsteri. A study in phylogeny. Rec Aust Mus 18:235–265

    Google Scholar 

  • Krawetz L (1911) Die Entstehung des Knorpelschädels vonCeratodus. Bull Soc Imp Nat Moscou 24:332–365

    Google Scholar 

  • Langille RM, Hall BK (1988) Role of the neural crest in development of the trabeculae and branchial arches in embryonic sea lamprey,Petromyzon marinus (L.). Development 102:301–310

    Google Scholar 

  • Lauder GV (1980) The role of the hyoid-apparatus in the feeding mechanism of the coelacanthLatimeria chalumnae. Copeia 1980:1–9

    Google Scholar 

  • Lebedkina NS (1964) The development of the dermal bones of the base of the skull in hynobiid urodeles (in Russian). Tr Zool Inst Leningrad 33:75–172

    Google Scholar 

  • Luther A (1909) Untersuchungen über die vom Nervus trigeminus innervierte Muskulatur der Selachier (Haie und Rochen) unter Berücksichtigung ihrer Beziehungen zu benachbarten Organen. Acta Soc Sci Fenn 36:1–176

    Google Scholar 

  • Luther A (1913) Über die vom Nervus trigeminus versorgte Muskulatur der Ganoiden und Dipneusten. Acta Soc Sci Fenn 41:1–72

    Google Scholar 

  • Luther A (1914) Über die vom Nervus trigeminus versorgte Muskulatur der Amphibien. Acta Soc Sci Fenn 44:1–151

    Google Scholar 

  • MacMahon BR (1969) A functional analysis of the aquatic and aerial respiratory movements of an African lungfish,Protopterus aethiopicus, with reference to the evolution of lung ventilation movements in vertebrates. J Exp Biol 51:407–430

    Google Scholar 

  • Maier W (1987) The ontogenetic development of the orbitotemporal region in the skull ofMonodelphis domestica (Didelphidae, Marsupialia), and the problem of the mammalian alisphenoid. In: Kuhn HJ, Zeller U (eds) Morphogenesis of the mammalian skull: 71–90. Mammalia depicta, 13, Beihefte zur Zeitschrift für Säugetierkunde. Parey, Hamburg

    Google Scholar 

  • Miles RS (1977) Dipnoan (lungfish) skulls and the relationships of the group. Zool J Linn Soc London 61:1–328

    Google Scholar 

  • Moy-Thomas JA (1933) Notes on the development of the chondrocranium ofPolypterus senegalus. Q J Microsc Sci 76:209–229

    Google Scholar 

  • Nelson GJ (1969) Gill arches and the phylogeny fishes, with notes on the classification of vertebrates. Bull Am Mus Nat Hist 141:475–552

    Google Scholar 

  • Nelson GJ (1970) Subcephalic muscles and intracranial joints of sarcopterygian and other fishes. Copeia 1970:468–471

    Google Scholar 

  • Nielsen E (1942) Studies on Triassic fishes from East Greenland. I.Glaucolepis andBoreosomus. Palaeozoologica Groenlandica I. Reitzels Forlag, Kobenhavn

    Google Scholar 

  • Norman JR (1926) The development of the chondrocranium of the eel (Anguilla vulgaris), with observations on the comparative morphology and development of the chondrocranium in bony fishes. Phil Trans R Soc London (B) 214:369–464

    Google Scholar 

  • Norris HW, Hughes SP (1920) The spiracular sense-organ in elasmobranchs, ganoids and dipnoans. Anat Rec 18:205–209

    Google Scholar 

  • Northcutt RG (1986) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol Suppl 1:277–297

    Google Scholar 

  • Panchen AL, Smithson TR (1987) Character diagnosis, fossils and the origin of tetrapods. Biol Rev 62:341–438

    Google Scholar 

  • Parker WN (1892) On the anatomy and physiology ofProtopterus annectens. Trans R Irish Acad 30:109–216

    Google Scholar 

  • Pehrson T (1922) Some points in the cranial development of teleostomian fishes. Acta Zool Stockholm 3:1–63

    Google Scholar 

  • Pehrson T (1945) Some problems concerning the development of skulls in turtles. Acta Zool Stockholm 26:157–184

    Google Scholar 

  • Pehrson T (1949) The ontogeny of the lateral line system in the head of dipnoans. Acta Zool Stockholm 30:153–182

    Google Scholar 

  • Perkins PL (1972) Mandibular mechanics and feeding groups in the Dipnoi. PhD Dissertation, Yale University, New Haven, Conn

    Google Scholar 

  • Pinkus F (1895) Die Hirnnerven desProtopterus annectens. Morphologische Arbeiten 4:275–346

    Google Scholar 

  • Pusey HK (1938) Structural changes in the anuran mandibular arch during metamorphosis, with reference toRana temporaria. Q J Microsc Sci 80:480–552

    Google Scholar 

  • Pusey HK (1943) On the head of the liopelmid frog,Ascaphus truei. I. The chondrocranium, jaws, arches and muscles of a partly grown larva. Q J Microsc Sci 84:105–185

    Google Scholar 

  • Regel ED (1961) Traces of segmentation in the chordal division of the chondrocranium inHynobius kayserlingii (in Russian). Trans Acad Sci USSR 140:253–255

    Google Scholar 

  • Regel ED (1964) The development of the cartilaginous neurocranium and its connections with the palatoquadrate inHynobius kayserlingii (in Russian). Contrib Zool Inst Acad Sci USSR. 33:34–74

    Google Scholar 

  • Reinbach W (1939) Untersuchungen über die Entwicklung des Kopfskelettes vonCalyptocephalus gayi. Jena Z Naturwiss 72 (nF Bd 65): 211–362

    Google Scholar 

  • Ridewood WG (1894) On the hyoid arch ofCeratodus. Proc Zool Soc London 1894:632–640

    Google Scholar 

  • Rosen DE, Forey PL, Gardiner BG, Patterson C (1981) Lungfishes, tetrapods, paleontology and plesiomorphy. Bull Am Mus Nat Hist 167:159–276

    Google Scholar 

  • Schmalhausen II (1923a) Der Suspensorialapparat der Fische und das Problem der Gehörknöchelchen. Anat Anz 56:534–543

    Google Scholar 

  • Schmalhausen II (1923b) Über die Autostylie der Dipnoer und Tetrapoda. Anat Anz 56:543–550

    Google Scholar 

  • Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic Press, London

    Google Scholar 

  • Schultze HP (1975) Das Axialskelett der Dipnoer aus dem Oberdevon von Bergisch Gladbach (Westdeutschland). Colloq Internat C N R Sci, Problèmes actuels de Paléontologie (Evolution des vertébrés) 218:149–157

    Google Scholar 

  • Schultze HP (1986) Dipnoans as Sarcopterygians. J Morphol Suppl 1:39–74

    Google Scholar 

  • Semon R (1901a) Die Zahnentwickelung desCeratodus forsteri. Denkschr Med Naturwiss Ges Jena 4:115–135

    Google Scholar 

  • Semon R (1901b) Normentafel zur Entwicklungsgeschichte desCeratodus forsteri. In: Keibel F (ed) Normentafeln zur Entwicklungsgeschichte der Wirbelthiere, 3. Fischer, Jena, pp 1–38

    Google Scholar 

  • Sewertzoff AN (1899) Die Entwickelung des Selachierschädels. Ein Beitrag zur Theorie der korrelativen Entwickelung. Festschr C von Kupffer. Fischer, Jena, pp 281–320

    Google Scholar 

  • Sewertzoff AN (1902) Zur Entwickelungsgeschichte desCeratodus forsteri. Anat Anz 21:593–608

    Google Scholar 

  • Sewertzoff AN (1928) The head skeleton and muscles ofAcipenser ruthenus. Acta Zool Stockholm 9:193–320

    Google Scholar 

  • Stadtmüller F (1925) Studien am Urodelenschädel. I. Zur Entwicklungsgeschichte des Kopfskelettes derSalamandra maculosa. Z Anat EntwGesch 75:149–225

    Google Scholar 

  • Thompson KS, Campbell KSW (1971) The structure and relationships of the primitive Devonian lungfishDipnorhynchus süssmilchi (Etheridge). Bull Peabody Mus Nat Hist 38:1–109

    Google Scholar 

  • Veit O (1911) Beiträge zur Kenntnis des Kopfes der Wirbelthiere I. Die Entwicklung des Primordialcraniums vonLepidosteus osseus. Anatomische Hefte 44:93–225

    Google Scholar 

  • Véran M (1988) Les éléments accessoires de l'árc hyoidien des poissons téléostomes (acanthodiens et osteichthyens) fossiles et actuels. Mém Mus Nat Hist Nat Sér C Sci Terre 54:1–98

    Google Scholar 

  • White EI (1965) The head ofDipterus valenciennesi Sedgewick & Murchinson. Bull Brit Mus Nat Hist (Geology) 11:1–45

    Google Scholar 

  • Wiedersheim R (1877) Das Kopfskelett der Urodelen. Gegenbaur's Morphol Jahrb 3:352–452, 459–548

    Google Scholar 

  • Wijhe JW van (1882) Über das Visceralskelett und die Nerven des Kopfes der Ganoiden und vonCeratodus. Niederländ Arch Zool 5:207–320

    Google Scholar 

  • Wiley EO (1979) Ventral gill arch muscles and the interrelationships of gnathostomes, with a new classification of the vertebrata. Zool J Linn Soc London 67:149–179

    Google Scholar 

  • Winterbottom R (1974) A descriptive synonymy of the striated muscles of Teleostei. Proc Acad Nat Sci, Philadelphia 125:225–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, P. Development of the cranium ofNeoceratodus forsteri, with a discussion of the suspensorium and the opercular apparatus in Dipnoi. Zoomorphology 114, 1–31 (1994). https://doi.org/10.1007/BF00574911

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00574911

Keywords

Navigation