Skip to main content
Log in

Leaf temperatures and energy balance ofWelwitschia mirabilis in its natural habitat

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Welwitschia mirabilis is a perennial desert plant with extremely large leaves (0.5–1.0 m broad, 1–2 m long). Leaf temperatures were measured in the field and the energy budget was calculated. The portions of the leaf which were kept above the ground had leaf temperatures which were only 4–6°C above air temperature. In the leaf portions which were in contact with the ground leaf temperatures were 6–12°C above air temperature (absolute maximum 51°C). The important feature in the energy budget ofWelwitschia mirabilis is its high reflectivity (38% of the global radiation). Only about 56% of the global radiation is absorbed by the thick leathery leaves. The energy loss due to convection is of the same order of magnitude as the reflection and it is abouy the same in the portions of leaf on and above the ground. The difference in leaf temperatures found in these portions is due to the loss of thermal radiation from the section of leaf above the ground to the cooler ground which is shaded by the leaf. The provision of a heat sink due to the large area of shade cast by these large leaves is of significance to the existence ofWelwitschia mirabilis in its arid habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bornmann, C.H., Elsworthy, J.A., Butler, V., Botha, C.E.J.:Welwitschia mirabilis: Observations on general habitat, seed, seedling, and leaf characteristics. Madoqua1, 53–66 (1972)

    Google Scholar 

  • Campbell, G.S.: An Introduction to Environmental Biophysics. New York-Berlin-Heidelberg: Springer-Verlag 1977

    Google Scholar 

  • Eller, B.M.: Messung spektraler Eigenschaften von Blättern im Felde. Verh. Schweiz. Natf. Ges.152, 142–145 (1972)

    Google Scholar 

  • Eller, B.M.: Die strahlungsökologische Bedeutung von Epidermisauflagen. Flora168, 146–192 (1979)

    Google Scholar 

  • Gates, D.M.: Leaf temperature and energy exchange. Arch. Meteorol. Geophys. Bioklimatol. [B]12, 321–336 (1963)

    Google Scholar 

  • Gates, D.M., Keegan, H.N., Schleter, J.C., Weidner, V.R.: Spectral properties of plants. Appl. Opt.4, 11–20 (1965)

    Google Scholar 

  • Gieß, W.:Welwitschia mirabilis Hook. fil. Dinteria3, 3–56 (1969)

    Google Scholar 

  • Grisebach, A.: Vegetation der Erde II. Leipzig: Wilhelm Engelmann Verlag 1884

    Google Scholar 

  • Körner, Ch., Cernusca, A.: A semi-automatic recording diffusion porometer and its performance under alpine field conditions. Photosynthetica10, 172–181 (1976)

    Google Scholar 

  • Lange, O.L.: Untersuchungen über Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten- und Savannenpflanzen. Flora147, 595–651 (1959)

    Google Scholar 

  • Lange, O.L., Lange, R.: Untersuchungen über Blattemperaturen, Transpiration und Hitzeresistenz an Pflanzen mediterraner Standorte (Costa brava, Spanien). Flora153, 387–425 (1963)

    Google Scholar 

  • Monteith, J.L.: Principles of Environmental Physics. London: Edward Arnold (Publishers) Ltd. 1973

    Google Scholar 

  • Mooney, H.A., Ehleringer, J., Björkman, O.: The energy balance of leaves of the evergreen desert shrubAtriplex hymenelytra. Oecologia (Berl.)29, 301–310 (1977)

    Google Scholar 

  • Pearman, G.I., Weaver, H.L., Tanner, G.B.: Boundary layer heat transfer coefficients under field conditions. Agric. Meteorol.9, 83–92 (1972)

    Google Scholar 

  • Raschke, K.: Über die physikalischen Beziehungen zwischen Wärmeübergangszahl, Strahlungsaustausch, Temperatur und Transpiration eines Blattes. Planta48, 200–238 (1956)

    Google Scholar 

  • Raunkiaer, C.: Life Forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press 1934

    Google Scholar 

  • Smith, W.K.: Temperatures of desert plants: Another perspective on the adaptability of leaf size. Science201, 614–616 (1978)

    Google Scholar 

  • Schmithüsen, J.: Allgemeine Vegetationsgeographie. Berlin: Walter de Gruyter and Co 1968

    Google Scholar 

  • Schulze, E.-D., Schulze, I.: Distribution and control of photosynthetic pathways in plants growing in the Namib desert, with special regard toWelwitschia mirabilis Hook. fil. Madoqua9, 5–13 (1976)

    Google Scholar 

  • Schulze, E.D., Ziegler, H., Stichler, W.: Environmental control of Crassulacean acid metabolism inWelwitschia mirabilis Hook. fil. in its range of natural distribution in the Namib desert. Oecologia (Berl.)24, 323–334 (1976)

    Google Scholar 

  • Taylor, S.E.: Optimal leaf form. In: Ecological Studies 12. Perspectives of Biophysical Ecology (D.M. Gates, R.B. Schmerl eds.) Springer Verlag: Berlin-Heidelberg-New York 1975

    Google Scholar 

  • Volk, O.H.: Die Florengebiete von Südwestafrika. Journal20, S. W. A. Wissensch. Gesellschaft Windhoek, 25–58 (1966)

  • Willert, v.D.J., Brinckmann, E., Schulze, E.-D.: Ecophysiological investigations in the coastal desert of Southern Africa, pp. 321–331. In: Ecological Processes in Coastal Environments (R.L. Jeffries, A.J. Davy eds.) Oxford Blackwell Scientific Pbs.: 1979

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, E.D., Eller, B.M., Thomas, D.A. et al. Leaf temperatures and energy balance ofWelwitschia mirabilis in its natural habitat. Oecologia 44, 258–262 (1980). https://doi.org/10.1007/BF00572688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572688

Keywords

Navigation