Skip to main content
Log in

Surface and thin film analysis in silicon technology: actual and future problems and demands

Oberflächen- und Dünnschichtanalyse in der Silizium-Technologie: aktuelle und zukünftige Probleme und Anforderungen

  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

In order to aim at production yields at economical levels in VLSI (verylargescaleintegration) technology a high degree of process maturity and stability has to be achieved. This requires a comprehensive characterization and control of the materials and processes used, and henceforth, the availability of appropriate analytical methods and tools. Thereby surface and thin film analytical tools play a key role and have to be applied from the very beginning of the development of a device technology. In the course of the full fabrication process a large number of thin films of inorganic (e.g., metals, insulators) and organic (e.g., photoresists) material is deposited, etched and completely or locally removed. The properties and quality of those thin films and the many surfaces and interfaces formed or occurring prior to and after the various processes such as film deposition, wet and dry etching, cleaning and the like have to be characterized and controlled. For the manifold surface analytical tasks nowadays a large number of techniques is available: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), Rutherford backscattering (RBS), total reflexion X-ray fluorescence analysis (TRXFA), plasma chromatography mass spectrometry (PCMS). Here examples are discussed where those methods are applied to problems arising in the process development as well as failure analysis of advanced circuits, in particular a 4 M DRAM (megabitdynamicrandomaccessmemory). Finally, limitations of the available methods and future problems and demands are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Widmann D, Mader H, Friedrich H (1988) In: Heywang W, Müller R (eds) Technologie hochintegrierter Schaltungen. Halbleiter-Elektronik, vol 19. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Sunami H (1985) IEDM Technical Digest 694–697

  3. Beinvogl W (1987) ITG-Fachberichte 98:5

    Google Scholar 

  4. Beinvogl W, Hopf E (1989) Festkörperprobleme 28 (in press)

  5. Mühlhoff HM, Murkin P, Küsters KH, Orlowski M, Müller W (1987) Proc 1st Int Symp on Ultralarge Scale Integration Science and Technology, Electrochem Soc 87-11:632

    Google Scholar 

  6. Küsters KH, Mühlhoff HM, Enders G, Mohr EG, Müller W (1987) Proc 1st Int Symp on Ultralarge Scale Integration Science and Technology, Electrochem Soc 87-11:640

    Google Scholar 

  7. Kolbesen BO, Strunk H (1985) In: Huff HR, Einspruch NG (eds) VLSI-electronics: microstructure science, vol 12. Silicon materials. Academic Press, New York, p 143

    Google Scholar 

  8. Schwenke H, Knoth J (1982) Nucl Instrum Methods 193:239

    Google Scholar 

  9. Eichinger P, Rath HJ, Schwenke H (1988) In: Gupta DC (ed) Semiconductor fabrication: technology and metrology. ASTM STP990

  10. Penka V, Hub W (1989) Spectrochimica Acta (in press)

  11. Penka V, Hub W (1988) Paper presented at the 5. Arbeitstagung für Angewandte Oberflächenanalytik, Jülich

  12. Carr TW (1984) Plasma chromatography. Plenum Press, New York

    Google Scholar 

  13. Briggs D, Riviere JC (1983) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, p 87

    Google Scholar 

  14. Mühlhoff L (1989) Paper presented at the 5. Arbeitstagung für Angewandte Oberflächenanalytik, Jülich. Fresenius Z Anal Chem 333:527–530

    Google Scholar 

  15. Nicolet MA (1978) Thin Solid Films 52:415

    Google Scholar 

  16. Cheung N, von Seefeld H, Nicolet MA (1980) Proc Electrochem Soc 80:323

    Google Scholar 

  17. Maeda T, Shima S, Nakayama T, Kakumu M, Mori K, Iwabuchi S, Aoki R, Matsunaga J (1985) IEDM, Digest of Technical Papers, p 257

  18. Seah MP (1983) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, p 181

    Google Scholar 

  19. Sundgren JE, Johansson BO, Karlsson SE (1983) Thin Solid Films 105:353

    Google Scholar 

  20. Ahn KY, Wittmer M, Ting CY (1983) Thin Solid Films 107:45

    Google Scholar 

  21. Johansson BO, Sundgren JE, Greene JE, Rockett A, Bernett SA (1985) J Vac Sci Technol A3:303

    Google Scholar 

  22. Wittmer M (1982) J Appl Phys 53:1007

    Google Scholar 

  23. Oehrlein GS (1986) Phys Today 39:26

    Google Scholar 

  24. Flamm DL, Mucha JA (1987) In: Moss SJ, Ledwith A (eds) The chemistry of the semiconductor industry. Blackie, Glasgow, p 343

    Google Scholar 

  25. Ebel MF (1978) J Electron Spectrosc Relat Phenom 14:287

    Google Scholar 

  26. Segner J, Mohr EG (1985) Proc 3e Symposium Internationale sur la Gravure Seche et le Depot Plasma en Microelectronique, Cachan/Paris, p 85

  27. Yates K, West RH (1983) Surf Interface Anal 5:217

    Google Scholar 

  28. Chaney RL (1987) Surf Interface Anal 10:36

    Google Scholar 

  29. Krizek J, Berresheim K, Panzner G, Hochkirchen J (1987) Fresenius Z Anal Chem 329:139

    Google Scholar 

  30. Hösler W (1989) Paper presented at the 5. Arbeitstagung für Angewandte Oberflächenanalytik, Jülich. Fresenius Z Anal Chem 333:315–317

    Google Scholar 

  31. Engelhardt M, Schwarzl S (1988) Proc Symp Dry Process, Electrochem Soc 88-7, p 48

    Google Scholar 

  32. Uchida H, Miyai Y, Inoue M (1988) Proc Symp Dry Process Electrochem Soc, 88-7:55

    Google Scholar 

  33. Magee CW, Amberiadis KG (1986) In: Benninghoven A, Colton RJ, Simons DS, Werner HW (eds) Secondary ion mass spectrometry SIMS V. Springer, Berlin Heidelberg New York, p 279

    Google Scholar 

  34. Tanigaki T, Kawado S, Nishiyama K (1984) In: Benninghoven A, Okano J, Shimizu R, Werner HW (eds) Secondary ion mass spectrometry SIMS IV. Springer, Berlin Heidelberg New York, p 305

    Google Scholar 

  35. Schaber H, von Criegern R, Weitzel I (1985) J Appl Phys 58:4036

    Google Scholar 

  36. Böhm HJ, Wendt H, Oppolzer H, Masseli K, Kassing R (1987) J Appl Phys 62:2784

    Google Scholar 

  37. Kakoschke R, Binder H, Röhl S, Masseli M, Rangelov IW, Saler S, Kassing R (1987) Nucl Instrum Methods Phys Res B21:142

    Google Scholar 

  38. von Criegern R, Zeininger H, Röhl S (1988) Proc 6th Int Conf Secondary Ion Mass Spectrometry, “SIMS VI”, Versailles, 1987. Wiley, New York, p 419

    Google Scholar 

  39. Haudek H (1988) Proc 13. Vortragsveranstaltung des Arbeitskreises Rastermikroskopie in der Materialprüfung. Deutscher Verband für Materialprüfung e.V. p 57

  40. Horiguchi F, Nitayama A, Hieda K et al. (1987) Technical Digest of the International Electron Devices Meeting 1987 (IEDM-87), Washington, p 324

  41. Beamson G, Porte HQ, Turner DW (1981) Nature 290:556

    Google Scholar 

  42. Gaarenstroom SW (1981) Appl Surface Sci 7:7; J Vac Sci Technol (1982) 20:458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolbesen, B.O., Pamler, W. Surface and thin film analysis in silicon technology: actual and future problems and demands. Z. Anal. Chem. 333, 561–568 (1989). https://doi.org/10.1007/BF00572377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572377

Keywords

Navigation