Skip to main content
Log in

Metabolic pathways inParacoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes

10th Kluyver Memorial Lecture Given for the Netherlands Society of Microbiology on November 29th at Ghent, Belgium

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Denitrification and methylotrophy inParacoccus denitrificans are discussed. The properties of the enzymes of denitrification: the nitrate-nitrite antiporter, nitrate reductase, nitrite reductase, nitric oxide reductase and nitrous oxide reductase are described. The genes for none of these proteins have yet been cloned and sequenced fromP. denitrificans. A number of sequences are available for enzymes fromEscherichia coli, Pseudomonas stutzeri andPseudomonas aeruginosa. It is concluded that pathway specificc-type cytochromes are involved in denitrification. At least 40 genes are involved in denitrification.

In methanol oxidation at least 20 genes are involved. In this case too pathway specificc-type cytochromes are involved. The sequence homology between the quinoproteins methanol dehydrogenase, alcoholdehydrogenase and glucose dehydrogenase is discussed. This superfamily of proteins is believed to be derived from a common ancestor. ThemoxFJGI operon determines the structural components of methanol dehydrogenase and the associatedc-type cytochrome. Upstream of this operon 3 regulatory proteins were found. The mox Y protein shows the general features of a sensor protein and the moxX protein those of a regulatory protein. Thus a two component regulatory system is involved in both denitrification and methylotrophy.

The phylogeny of prokaryotes based on 16S rRNA sequence is discussed. It is remarkable that the 16S rRNA ofThiosphaera pantotropha is identical to that ofP. denitrificans. Still these bacteria show a number of differences.T. pantotropha is able to denitrify under aerobic circumstances and it shows heterotrophic nitrification. Nitrification and heterotrophic nitrification are found in species belonging to the β-and γ-subdivisions of purple non-sulfur bacteria. Thus the occurrence of heterotrophic nitrification inT. pantotropha which belongs to the α-subdivision of purple non-sulfur bacteria is a remarkable property. FurthermoreT. pantotropha contains two nitrate reductases of which the periplasmic one is supposed to be involved in aerobic denitrification. The nitrite reductase is of the Cu-type and not of the cytochromecd 1 type as inP. denitrificans. Also the cytochromeb of theQbc complex ofT. pantotropha is highly similar to its counterpart inP. denitrificans. It is hypothesized that the differences between these two organisms which both contain large megaplasmids is due to a combination of loss of genetic information and plasmid-coded properties. The distribution of a number of complex metabolic systems in eubacteria and in a number of species belonging to the α-group of purple non sulphur bacteria is reviewed. Two possibilities to explain this haphazard distribution are considered: 1. Lateral gene transfer between distantly related micro organisms occurs frequently. 2. The eubacterial ancestors must have possessed already these properties. The distribution of these properties is due to sporadic loss during evolutionary divergence.

With respect to the occurrence and frequency of lateral gene transfer two opposing views exist. According to molecular biologists lateral gene transfer occurs frequently and is very easy. Bacteria are supposed to form one large gene pool. On the other hand population geneticists have provided evidence that strong systems operate that establish reproductive isolation between diverged species and even between closely related cell lines.

Data on amino acid sequences of nitrogenase proteins, cytochromesc, cytochrome oxidases, β-subunits of ATP synthase and tryptophan biosynthetic enzymes of various micro organisms were reviewed. In all these cases phylogenetic trees could be constructed based on the amino acid sequence data. In all cases this phylogenetic tree was similar to the one based on 16S rRNA homology. Only in one case evidence for the occurrence of lateral gene transfer was obtained. Therefore it is concluded that lateral gene transfer played a minor role in the distribution of complex metabolic systems among prokaryotes. It must be stressed that this does not exclude the possibility that lateral gene transfer occurred frequently in the initial stage of bacterial evolution. It is hypothesized that the appearance of nitrogen fixation, denitrification and cytochrome oxidase formation were early events in the evolution of micro organisms. Both systems are supposed to have evolved only once. Subsequently the capacity to fix nitrogen or to denitrifymust have been lost many times, just as photosynthetic capacity is supposed to have been lost many times. During evolution many systems have been lost leading to a haphazard distribution of metabolic characters among bacteria. As an example it is suggested that organisms with a respiratory chain similar to that ofEscherichia coli arose by loss of the capacity to form the Qbc complex andc-type cytochromes. The remaining systems could be controlled much better however than in the ancestral organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albracht SPJ, van Verseveld HW, Hagen WR & Kalkman ML (1980) A comparison of the respiratory chain in particular fromParacococcus denitrificans and beef heart mitochondria by e.p.r. spectroscopy. Biochim. Biophys. Acta 593: 173–186

    Google Scholar 

  • Alef K, Jackson JB, McEwan AG & Ferguson SJ (1985) The activity of two pathways of nitrate reduction inRhodopseudomonas capsulata. Arch. Microbiol. 142: 403–408

    Google Scholar 

  • Alefounder PR, McCarthy JEG & Ferguson SJ (1981) A periplasmic location for methanoldehydrogenase fromParacoccus denitrificans. Implications for proton pumping by cytochromeaa 3. Biochem. Biophys. Res. Commun. 98: 778–784

    Google Scholar 

  • Alefounder PR & Ferguson SJ (1982) Electron-transport linked nitrous oxide synthesis and reduction monitored with an electrode. Biochem. Biophys. Res. Commun. 104: 1149–1155

    Google Scholar 

  • Amann R, Ludwig W & Schleifer K-H (1988) β-subunit of ATP synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J. Gen. Microbiol. 134: 2815–2821.

    Google Scholar 

  • Ambler RP (1991) Sequence variability in bacterial cytochromesc. Biochim. Biophys. Acta 1058: 42–47

    Google Scholar 

  • Ambler RP, Daniel M, Hermoso J, Meyer TE, Bartsch RG & Kamen MD (1979) Cytochromec sequence variation among the recognised species of purple nonsulphur photosynthetic bacteria. Nature 278: 659–660

    Google Scholar 

  • Anderson DJ, Morris CJ, Nunn DN, Anthony C & Lidstrom ME (1990) Nucleotide sequence of theMethylobacterium extorquens AM1moxF andmoxJ genes involved in methanol oxidation. Gene 90: 173–176

    Google Scholar 

  • Ando S, Kato S-I & Komagata K (1989) Phylogenetic diversity of methanol-utilizing bacteria deduced from their 5S ribosomal RNA sequences. J. Gen. Appl. Microbiol. 35: 351–361

    Google Scholar 

  • Anemüller S & Schäfer G (1990) Cytochromeaa 3 fromSulfolobus acidocaldarius. A single subunit, quinol-oxidizing archaebacterial terminal oxidase. Eur. J. Biochem. 191: 297–305

    Google Scholar 

  • Anraku Y & Gennis RB (1987) The aerobic respiratory chain ofEscherichia coli. Tr. Biochem. Sci. 12: 262–266

    Google Scholar 

  • Anthony C (1982) The Biochemistry of Mehylotrophs. Academic Press, London

    Google Scholar 

  • Anthony C (1986) Bacterial oxidation of methane and methanol. Adv. Microbiol. Physiol. 27: 113–210

    Google Scholar 

  • Arai H, Sanbongi Y, Igarashi Y & Kodama T (1990) Cloning and sequencing of the gene encoding cytochromec 551 fromPseudomonas aeriginosa. FEBS Lett. 261: 196–198

    Google Scholar 

  • Arfman N (1991) Methanol metabolism in thermotolerant bacilli. Ph. D. Thesis, State University, Groningen

  • Arnold W, Rump A, Klipp W, Priefer UB & Pühler A (1988) Nucleotide sequence of a 24206-base-pair fragment carrying the entire nitrogen fixation gene cluster ofKlebsiella pneumoniae. J. Mol. Biol. 203: 715–738

    Google Scholar 

  • Assinder SJ & Williams PA (1990) The TOL plasmids: Determinants of the catabolism of toluene and the xylenes. Adv. Micr. Physiol 31: 1–69

    Google Scholar 

  • Auling G, Busse J, Hahn M, Hennecke H, Kroppenstedt R-M, Probst A & Stackebrandt E (1988) Phylogenetic heterogenecity and chemotaxonomic properties of certain gram-negative aerobic carboxydobacteria. System Appl. Microbiol. 10: 264–272

    Google Scholar 

  • Bamforth CW & Quayle JR (1978) Aerobic and anaerobic growth ofParacoccus denitrificans on methanol. Arch. Microbiol. 119: 91–97

    Google Scholar 

  • Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I & Kondorosi A (1981) Location of modulation and nitrogen fixation genes on a high molecular weight plasmid ofR. meliloti. Mol. Gen. Genet. 184: 318–325

    Google Scholar 

  • Bédard C & Knowles R (1989) Physiology, biochemistry and specific inhibitors of CH4, NH +4 and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53: 68–84

    Google Scholar 

  • Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound nitrate reductases inThiosphaera pantotropha. The periplasmic enzyme catalyzes the first step in anaerobic respiration. FEBS Lett. 265: 85–87

    Google Scholar 

  • Bell LC & Ferguson SJ (1991) Nitric and nitrous oxide reductases are active under aerobic conditions in cells ofThiophaera pantotropha. Biochem. J. 273: 423–427

    Google Scholar 

  • Betlach MR (1982) Evolution of bacterial denitrification and denitrifier diversity. Antonie van Leeuwenhoek 48: 585–607

    Google Scholar 

  • Bishop PE, Premakumar R, Joerger RD, Jacobsen MR, Dalton DA, Chisnell JR & Wolfinger ED (1988) Alternative nitrogen fixation systems inAzotobacter vinelandii. In: Bothe H, de Bruijn FJ & Newton WR (Eds) Nitrogen Fixation: Hundred Years After (pp 71–79). Gustav Fischer, Stuttgart

    Google Scholar 

  • Biville F, Turkin E & Gasser F (1989) Cloning and genetic analysis of six pyrroloquinone biosynthesis genes inMethylobacterium organophilum DSM 760. J. Gen. Microbiol. 135: 2917–2929

    Google Scholar 

  • Blasco F, Iobbi C, Giordano G, Chippaux M & Bonnefoy V (1989) Nitrate reductase ofEscherichia coli. Completion of the nucleotide sequence of thenar operon and reassessment of the role of the α and β-subunits in iron binding and electron transfer. Mol. Gen. Genet. 218: 249–256

    Google Scholar 

  • Blaut M & Gottschalk G (1985) Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Tr. Biochem. Sci. 10: 486–489

    Google Scholar 

  • Boogerd FC, van Verseveld HW & Stouthamer AH (1980) Electron transport to nitrous oxide inParacoccus denitrificans. FEBS Lett. 113: 279–284

    Google Scholar 

  • Boogerd FC, van Verseveld HW & Stouthamer AH (1983) Dissimilatory nitrate uptake inParacoccus denitrificans via a † μH-dependent system and a nitrate-nitrite antiport system. Biochim. Biophys. Acta 723: 415–427

    Google Scholar 

  • Bosma G, Braster M, Stouthamer AH & van Verseveld HW (1987) Subfractionation and characterization of solublec-type cytochromes fromParacoccus denitrificans cultures under various limiting conditions in the chemostat. Eur. J. Biochem. 165: 665–670

    Google Scholar 

  • Bott M, Bolliger M & Hennecke H (1990) Genetic analysis of the cytochromec-aa 3 branch of theBradyrhizobium japonicum respiratory chain. Mol. Microbiol. 4: 2147–2157

    Google Scholar 

  • Bowien B, Friedrich B & Friedrich CG (1984) Involvement of megaplasmids in heterotrophic derepression of the carbon dioxide assimilating enzyme system inAlcaligenes sp. Arch. Microbiol. 139: 305–310

    Google Scholar 

  • Brewin NJ, De Jong TM, Phillip DA & Johnston AWB (1980) Cotransfer of determinants for hydrogenase activity and modulation ability inRhizobium leguminosarum. Nature 288: 77–79

    Google Scholar 

  • Brisson-Nol A, Arthur M & Courvalin P (1988) Evidence for natural gene transfer from gram-positive cocci toEscherichia coli. J. Bacteriol. 170: 1739–1745

    Google Scholar 

  • Broda E (1975) The Evolution of the Bioenergetic Processes. Pergamon Press Ltd, Oxford

    Google Scholar 

  • Buse G, Hensel S & Fee JA (1989) Evidence for cytochrome oxidase subunit I and a cytochromec-subunit fused protein in the cytochromec 1 aa 3 ofThermus thermophilus. How old is cytochrome oxidase. Eur. J. Biochem. 181: 261–268

    Google Scholar 

  • Buse G & Steffens GCM (1991) Cytochromec oxidase inParacoccus denitrificans. Protein, chemical, structural and evolutionary aspects. J. Bioenerg. Biomembr. 23: 269–289

    Google Scholar 

  • Campbell A (1981) Evolutionary significance of accessory DNA elements in bacteria. Ann. Rev. Microbiol. 35: 55–83

    Google Scholar 

  • Cao J, Shapleigh J, Gennis R, Revzin A & Ferguson-Miller S (1991) The gene encoding cytochromec oxidase subunit II fromRhodobacter sphaeroides; comparison of the deduced aminoacid sequence with sequences of corresponding peptides from other species. Gene 101: 133–137

    Google Scholar 

  • Carr GJ, Page MD & Ferguson SJ (1989) The energy conserving nitric-oxide-reductase system inParacoccus denitrificans. Distinction from the nitrite reductase that catalyzes synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur. J. Biochem. 179: 683–692

    Google Scholar 

  • Chepuri V, Lemieux L, Au DC-T & Gennis RB (1990) The sequence of thecyo operon indicates sunstantial structural similarities between the cytochromeo ubiquinol oxidase ofEscherichia coli and theaa 3-type family of cytochromec oxidases. J. Biol. Chem. 265: 11185–11192

    Google Scholar 

  • Cleton-Jansen A-M, Goosen N, Odle G & van de Putte P (1988) Nucleotide sequence of the gene coding for quinoprotein glucose dehydrogenase fromAcinetobacter calcoaceticus. Nucl. Ac. Res. 16: 6228

    Google Scholar 

  • Cleton-Jansen A-M, Goosen N, Fayet O & van de Putte P (1990) Cloning, mapping and sequencing of the gene encodingEscherichia coli quinoprotein glucose dehydrogenase. J. Bacteriol. 172: 6308–6315

    Google Scholar 

  • Cleton-Jansen A-M (1991) A molecular genetic analysis of the substrate specificity of quinoprotein glucose dehydrogenase. Ph. d. Thesis, State University, Leiden

  • Collins MD & Jones D (1981) Distribution of isoprenoid quinone structural types and their taxonomic implications. Microbiol. Rev. 45: 316–354

    Google Scholar 

  • Cox RB & Quayle JR (1975) The autotrophic growth ofMicrococcus denitrificans on methanol. Biochem. J. 150: 569–571

    Google Scholar 

  • Coyle CL, Zumft WG, Kroneck PMH, Körner H & Jakob W (1985) Nitrous oxide reductase from denitrifyingPseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153: 459–467

    Google Scholar 

  • Crawford IP (1989) Evolution of a biosynthetic pathway: The tryptophan paradigm. Ann. Rev. Microbiol. 43: 567–600

    Google Scholar 

  • Davidson VL & Kumar MA (1989) Cytochromec 550 mediates electron transfer from inducible periplasmicc-type cytochromes to the cytoplasmic membrane ofParacoccus denitrificans. FEBS Lett. 245: 271–273

    Google Scholar 

  • Davies J (1990) Interspecific gene transfer: where next. Tr. Biotechnol. 8: 198–203

    Google Scholar 

  • De Ley J (1992) The proteobacteria: Ribosomal RNA cistron simularities and bacterial taxonomy. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition, Vol III. Springer-Verlag, New York (in press)

    Google Scholar 

  • De Moss JA & Hsu P-Y (1991) NarK enhances nitrate uptake and nitrite excretion inEscherichia coli. J. Bacteriol. 173: 3303–3310

    Google Scholar 

  • Dermastia M, Turk T & Hollocher TC (1991) Nitric oxide reductase. Purification fromParacoccus denitrificans with use of a single column and some characteristics. J. Biol. Chem. 266: 10899–10905

    Google Scholar 

  • De Vries GE (1986) Molecular biology of bacterial methanol oxidation. FEMS Microbiol. Rev. 39: 235–258

    Google Scholar 

  • De Vries GE, Harms N, Maurer K, Papendrecht A & Stouthamer AH (1988) Physiological regulation ofParacoccus denitrificans methanol dehydrogenase synthesis and activity. J. Bacteriol. 170: 3731–3737

    Google Scholar 

  • De Vries GE, Harms N, Hoogendijk J & Stouthamer AH (1989) Isolation and characterization ofParacoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch. Microbiol. 152: 52–57

    Google Scholar 

  • De Vries GE, Kües U & Stahl U (1990) Physiology and genetics of methylotrophic bacteria. FEMS Microbiol. Rev. 75: 75: 57–102

    Google Scholar 

  • Diamond JR (1986) Why do disused proteins become genetically lost or repressed. Nature 321: 565–566

    Google Scholar 

  • Dickerson RE (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature 283: 210–212

    Google Scholar 

  • Dijkhuizen L & Arfman N (1990) Methanol metabolism in thermotolerant methylotrophicBacillus species. FEMS Microbiol. Rev. 87: 215–220

    Google Scholar 

  • Dryden SC & Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons inRhodobacter sphaeroides. Nucl. Ac. Res. 18: 7267–7277

    Google Scholar 

  • Duine JA, Frank J & Verwiel PEJ (1980) Structure and activity of the prosthetic group of methanol-dehydrogenase. Eur. J. Biochem. 108: 187–192

    Google Scholar 

  • Eady RR (1991) The dinitrogen-fixing bacteria. In: Ballows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition, Vol 1 (pp 534–553). Springer Verlag, New York

    Google Scholar 

  • Eady RR, Robson RL, Pau RN, Woodley P, Lowe DJ, Miller RW, Thorneley RNF, Smith BE, Gormal K, Fischer K, Eldridge M & Bergström J (1988) In: Bothe H, de Bruijn FJ & Newton WE (Eds) Nitrogen Fixation: Hundred Years After (pp 81–86). Gustav Fischer, Stuttgart

    Google Scholar 

  • Elkan GH & Bunn CR (1991) The Rhizobia. In: Balows A, Trüper HG, Dworkin A, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition, Vol 3 (pp 2197–2213). Springer Verlag, New York

    Google Scholar 

  • Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM & SubbaRao NS (1990) Bacteriochlorophyl and photosynthetic reaction centers inRhizobium strain BTAiI. Appl. Env Microbiol. 56: 3445–3449

    Google Scholar 

  • Fenderson FF, Kumar S, Adman ET, Liu M-Y, Payne WJ & Le Gall J (1991) Amino acid sequence of nitrite reductase: A copper protein fromAchromobacter cycloclastes. Biochemistry 30: 7180–7185

    Google Scholar 

  • Ferguson SJ (1988) The redox reactions of the nitrogen and sulphur cycles. Symp. Soc. Gen. Microbiol. 42: 1–29

    Google Scholar 

  • Friedrich B (1989) Genetics of energy converting systems in aerobic chemolithotrophs. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 415–436). Science Tech Publishers, Madison WI and Springer Verlag, Berlin

    Google Scholar 

  • Friedrich CG & Friedrich B (1983) Regulation of hydrogenase formation is temperature sensitive and plasmid coded inAlcaligenes eutrophus. J. Bacteriol. 153: 176–181

    Google Scholar 

  • Frunzke K & Meyer O (1990) Nitrate respiration, denitrification and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch. Microbiol. 154: 168–174

    Google Scholar 

  • Galimand M, Gamper M, Zimmermann A & Haas D (1991) Positive FNR-like control of anaerobic arginine degradation and nitrate respiration inPseudomas aeruginosa. J. Bacteriol. 173: 1598–1606

    Google Scholar 

  • Gennis RB (1991) some recent advances relating to prokaryotic cytochromec oxidases. Bioch. Biophys. Acta 1085: 21–24

    Google Scholar 

  • Goodhew CF, Wilson IBH, Hunter DJB & Pettigrew GW (1990) The cellular location and specificity of bacterial cytochromec peroxidases. Biochem. J. 271: 707–712

    Google Scholar 

  • Goodwin PM (1990) The biochemistry and genetics of C1 metabolism in the pink pigmented facultative methylotrophs. In: Codd GA, Dijkhuizen L & Tabita FR (Eds) Autotrophic Microbiology and One-carbon Metabolism, Vol 1 (pp 143–161). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Goosen N, Horsman HPA, Huinen RGM & van de Putte (1989)Acinetobacter caloaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: Nucleotide sequence and expression inEscherichia coli K-12. J. Bacteriol. 171: 447–455

    Google Scholar 

  • Goretski J & Hollocher TC (1988) Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J. Biol. Chem. 263: 2316–2323

    Google Scholar 

  • Green PN (1991) The genusMethylobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition Vol 3 (pp 2342–2349). Springer Verlag, New York

    Google Scholar 

  • Gründig MW & Doronina NV (1984) dissimilation of methanol inAcetobacter sp MB58. Z. Allg. Mikrobiol. 24: 77–84

    Google Scholar 

  • Harashima K, Shiba T & Murata N (1989) Aerobic Photosynthetic Bacteria. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Harms N, de Vries GE, Maurer K, Hoogendijk J & Stouthamer AH (1987) Isolation and nucleotide sequence of the methanoldehydrogenase structural gene fromParacoccus denitrificans. J. Bacteriol. 169: 3969–3975

    Google Scholar 

  • Harms N, van Spanning RJM, Oltmann LF & Stouthamer AH (1989) Regulation of methanoldehydrogenase inParacoccus denitrificans. Antonie van Leeuwenhoek 56: 47–50

    Google Scholar 

  • Harms N & van Spanning RJM (1991) C1 metabolism inParacoccus denitrificans. Genetics ofParacoccus denitrificans. J. Bioenerg. Biomembr. 23: 187–210

    Google Scholar 

  • Hedges RW (1972) The pattern of evolutionary change in bacteria. Heredity 30: 39–48

    Google Scholar 

  • Heiss B, Frunzke K & Zumft WG (1989) Formation of the N−N bond form nitric oxide by a membrane-bound cytochromebc complex of nitrate-respiring (denitrifying)Pseudomonas stutzeri. J. Bacteriol. 171: 3288–3297

    Google Scholar 

  • Hennecke H, Kaluza K, Thöny B, Fuhrmann M, Ludwig W & Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S RNA inRhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142: 342–348

    Google Scholar 

  • Hernandez D & Rowe JJ (1987) Oxygen regulation of nitrate uptake in denitrifyingPseudomonas aeruginosa. Appl. Env. Microbiol. 53: 745–750

    Google Scholar 

  • Hirsch P (1968) Photosynthetic bacteria growing under carbon monoxide. Nature 217: 555–556

    Google Scholar 

  • Hochstein LI & Tomlinson GA (1988) The enzymes associated with denitrification. Ann. Rev. Microbiol. 42: 231–261

    Google Scholar 

  • Hochstein LI & Lang F (1991) Purification and properties of a dissimilatory nitrate reductase fromHaloferax denitrificans. Arch. Biochem. Biophys. 288: 380–385

    Google Scholar 

  • Holländer R (1978) The cytochromes ofThermoplasma acidophilum. J. Gen Microbiol. 108: 165–167

    Google Scholar 

  • Holloway BW & Morgan AF (1986) Genome organization inPseudomonas. Ann. Rev. Microbiol. 40: 79–105

    Google Scholar 

  • Holloway BW, Dharmstithi S, Krishnapillai V, Morgan A, Obeyesekere V, Ratmanigsih E, Sinclair M, Strom D & Zhang C (1990) Patterns of gene linkages inPseudomonas species. In: Drlica K & Riley M (Eds) The Bacterial Chromosome (pp 91–105). ASM, Washington D.C.

    Google Scholar 

  • Hommes RWJ, Postma PW, Neijssel OM, Tempest DW, Dokter P & Duine JA (1984) Evidence of a quinoprotein glucosedehydrogenase apoenzyme in several strains ofEscherichia coli. FEMS Microbiol. Lett. 24: 329–333

    Google Scholar 

  • Hreggvidsson GD (1991) Two structurally different cytochromesc fromBacillus azotoformans: on the evolution of Gram-positive bacteria. Biochim. Biophys. Acta 1058: 52–55

    Google Scholar 

  • Hu M & Deonier (1981) Mapping of IS elements flanking theargF region of theEscherichia coli K-12 chromosome. Mol. Gen. Genetics 181: 222–229

    Google Scholar 

  • Husain M & Davidson VL (1986) Characterization of two inducible periplasmicc-type cytochromes fromParacoccus denitrificans. J. Biol. Chem. 261: 8577–8580

    Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M & Yano K (1989) Cloning ann sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcoholdehydrogenase fromAcetobacter aceti. J. Bacteriol. 171: 3115–3122

    Google Scholar 

  • Iuchi & Lin ECC (1987) ThenarL gene product activates the nitrate reductase operon and represses the fumarate and trimethylamine N-oxide reductase operons inEscherichia coli. Proc. Nat. Acad. Sci. 84: 3901–3905

    Google Scholar 

  • Jeter RM & Ingraham JL (1981) The denitrifying prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A & Schlegel HG (Eds) The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria, Vol 1 (pp 913–925). Springer Verlag KG, Berlin

    Google Scholar 

  • John P & Whatley FR (1975)Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254: 495–498

    Google Scholar 

  • Johnson JL & Rajagopolan KV (1982) Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc. Nat. Acad. Sci. 79: 6856–6860

    Google Scholar 

  • Johnson MK, Bennett DE, Morningstar JE, Adams MWW & Mortenson LE (1985) The iron-sulfur cluster composition ofEscherichia coli nitrate reductase. J. Biol. Chem. 260: 5456–5463

    Google Scholar 

  • Johnston AWB, Firmin JL & Rosen L (1988) On the analysis of symbiotic genes ofRhizobium. Symp. Soc Gen. Microbiol. 42: 439–455

    Google Scholar 

  • Jones D & Sneath P (1970) Genetic transfer and bacterial taxonomy. Bacteriol. Rev. 34: 40–81

    Google Scholar 

  • Jones CW, Brice JM & Edwards C (1977) The effect of respiratory chain composition on the growth efficiencies of aerobic bacteria. Arch. Microbiol. 115: 85–93

    Google Scholar 

  • Jüngst A, Wakabayashi S, Matsubara H & Zumft WG (1991a) Thenir STBM region coding for cytochromecd 1-dependent nitrite respiration ofPseudomonas stutzeri consists of a cluster of mono-, di- and tetraheme proteins. FEBS Lett. 279: 205–209

    Google Scholar 

  • Jüngst A, Braun C & Zumft WG (1991b) Close linkage inPseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Mol. Gen. Genet. 225: 241–248

    Google Scholar 

  • Kalman LV & Gunsalus RP (1989) Identification of a second gene involved in global regulation of fumarate reductase and other nitrate-controlled genes for anaerobic respiration inEscherichia coli. J. Bacteriol. 171: 3810–3816

    Google Scholar 

  • Kamp AF, La Rivière JWM & Verhoeven W (1959) Albert Jan Kluyver. His Life and Work. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Kelly DP (1989) Physiology and Biochemistry of unicellular sulfur bacteria. In: Schlegel HG & Bowien B (Eds) Autotrophic bacteria (pp 193–217). Science Tech Publishers, Madison WI and Springer Verlag, Berlin

    Google Scholar 

  • Komageta K (1989) Taxonomy of facultative methylotrophs. In: Harashima K, Shiba T & Murata N (Eds) Aerobic Photosynthetic Bacteria (pp 25–38). Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Krawiec S & Riley M (1990) Organization of the bacterial chromosome. Microbiol. Rev. 54: 502–539

    Google Scholar 

  • Kucera I (1989) The release of nitric oxide from denitrifying cells ofParacoccus denitrificans by an uncoupler is the basis for a new oscillator. FEBS Lett. 249: 56–58

    Google Scholar 

  • Kurowski B & Ludwig B (1987) The genes of theParacoccus denitrificans bc 1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J. Biol. Chem. 262: 13805–13811

    Google Scholar 

  • Lane DJ, Stahl DA, Olsen GJ, Heller DJ & Pace NR (1985) Phylogenetic analysis on the generaThiobacillus andThiomicropira by 5S rRNA sequences. J. Bacteriol. 163: 75–81

    Google Scholar 

  • Lanyi JK (1968) Studies of the electron transport chain of extremely halophilic bacteria. Spectrophotometric identification of the cytochromes ofHalobacterium cutirubrum. Arch. Biochem. Biophys. 128: 716–724

    Google Scholar 

  • Lee HS, Hancock REW & Ingraham JL (1989) Properties of aPseudomonas stutzeri channel-forming protein (NosA) required for production of copper-containing N2O reductase. J. Bacteriol. 171: 2096–2100

    Google Scholar 

  • Li SF & DeMoss JA (1988) Location of sequences in thenar promotor ofE coli required for the regulation by FNR and NarL. J. Biol. Chem. 263: 13700–13705

    Google Scholar 

  • Lidstrom ME (1991) The aerobic methylotrophic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition Vol 1 (pp 431–445). Springer Verlag, New York

    Google Scholar 

  • Lidstrom ME, Nunn DN, Stephens RL & Haygood MG (1987) Molecular Biology of methanol oxidation. In: van Verseveld HW & Duine JA (Eds) Microbial Growth on C1 Compounds (pp 246–254). Martinus Nijhof Publishers, Dordrecht

    Google Scholar 

  • Lidstrom ME & Stirling DI (1990) Methylotrophs: Genetics and commercial applications. Ann. Rev. Microbiol. 44: 27–58

    Google Scholar 

  • Long AR & Anthony C (1991) Characterization of the periplasmic cytochromesc ofParacoccus denitrificans: identification of the electron acceptor for methanoldehydro-genase and description of a novel cytochromec heterodimer. J. Gen. Microbiol. 137: 415–425

    Google Scholar 

  • Machlin SM & Hanson RS (1988) Nucleotide sequence and transcriptional start site of theMethylobacterium organophilum XX methanoldehydrogenase structural gene. J. Bacteriol. 170: 4739–4747

    Google Scholar 

  • Mancinelli RL & McKay CP (1988) The evolution of nitrogen cycling. Orig. Life Evol. Biosphere 18: 311–325

    Google Scholar 

  • Matchova I & Kucera I (1991) Evidence for the role of soluble cytochromec in the dissimilatory reduction of nitrite and nitrous oxide by cells ofParacoccus denitrificans. Biochim. Biophys. Acta 1058: 256–260

    Google Scholar 

  • Mather MW, Springer P & Fee JK (1991) Cytochrome oxidase genes fromThermus thermophilus. Nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochromecaa 3. J. Biol. Chem. 266: 5025–5035

    Google Scholar 

  • McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB & Ferguson SJ (1985) Nitrous oxide reduction by members of the familyRhodospirillaceae and the nitrous oxide reductase ofRhodopseudomonas capsulata. J. Bacteriol. 164: 823–830

    Google Scholar 

  • Meulenberg JJM (1991) Cloning and expression of theKlebsiella pneumoniae PQQ genes. Ph.D. Thesis, University of Amsterdam

  • Meyer O (1989) Aerobic carbonmonoxide-oxidizing bacteria. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 331–350). Science Tech Publishers, Madison WL and Springer Verlag, Berlin

    Google Scholar 

  • Meyer O & Fiebig K (1985) Enzymes oxidizing carbon monoxide. In: Degn H, Cox RP & Toftland H (Eds) Microbial Gas Metabolism (pp 147–168). Reidel Publishing Co., Dordrecht

    Google Scholar 

  • Meyer O, Frunzke K, Gadkari D, Jacobitz S, Hugendieck I & Kraut M (1990) Utilization of carbonmonoxide by aerobes; recent advances. FEMS Microbiol. Rev. 87: 253–260

    Google Scholar 

  • Mokkele K, Tang YJ, Clark MA & Ingraham JL (1987) APseudomonas stutzeri outer membrane protein inserts copper into N2O reductase. J. Bacteriol. 169: 5721–5726

    Google Scholar 

  • Noji S, Nohno T, Saito T & Taniguchi S (1989) ThenarK gene product participates in nitrate transport induced inEscherichia coli nitrate-respiring cells. FEBS Lett. 252: 139–143

    Google Scholar 

  • Nordling M, Young S, Karlsson BG & Lundberg LG (1990) The structural gene for cytochromec 551 fromPseudomonas aeruginosa. The nucleotide sequence shows a location downstream of the nitrite reductase gene. FEBS Lett. 259: 230–232

    Google Scholar 

  • Nunn ON & Anthony C (1988) The nucleotide sequence and deduced amino acid sequence of the cytochtomec 1 gene ofMethylobacterium extorquens AM1: A novel class ofc-type cytochromes. Biochem. J. 256: 673–676

    Google Scholar 

  • Nunn DN, Day D & Anthony C (1989) The second subunit of methanol dehydrogenase ofMethylobacterium extorquens AM1. Biochem. J. 260: 857–862

    Google Scholar 

  • Ochman H & Wilson AC (1987) Evolutionary history of enteric bacteria. In: Neidhardt FC (Ed)Escherichia coli andSalmonella typhinurium Vol 2 (pp 1649–1654). ASM Washington D.C.

    Google Scholar 

  • Pettigrew GW (1991) The cytochromec peroxidase ofP. denitrificans. Biochim. Biophys. Acta. 1058: 25–27

    Google Scholar 

  • Postgate JR (1974) Evolution within nitrogen-fixing systems. Symp. Soc. Gen. Microbiol. 24: 263–292

    Google Scholar 

  • Postgate JR (1982) The Fundamentals of Nitrogen Fixation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Postgate JR (1989) Trends and perspectives in nitrogen fixation research. Adv. Microbiol. Physiol. 30: 1–22

    Google Scholar 

  • Postgate JR & Eady RR (1988) The evolution of biological nitrogen fixation. In: Bothe H, de Bruijn FJ & Newton WE (Eds) Nitrogen Fixation: Hundred Years After (pp 31–40). Gustav Fischer, Stuttgart

    Google Scholar 

  • Postgate JR, Kent HM & Robson RL (1988) Nitrogen fixation byDesulfovibrio. Symp. Soc. Gen. Microbiol. 42: 457–471

    Google Scholar 

  • Raitio M, Jalli T & Saraste M (1987) Isolation and analysis of the genes for cytochromec oxidase inParacoccus denitrificans. EMBO J. 6: 2825–2833

    Google Scholar 

  • Ras J, Reynders WNM, van Spanning RJM, Harms N, Oltmann LF & Stouthamer AH (1991) Isolation, sequencing and mutagenesis of the gene encoding cytochromec 553i ofParacoccus denitrificans and characterization of the mutant strain. J. Bacteriol. 173: 6971–6979

    Google Scholar 

  • Reanney D (1976) Extrachromosomal elements as possible agents of adaptation and development. Bacteriol. Rev. 40: 552–590

    Google Scholar 

  • Riley M & Krawiec S (1987) Genome organization. In: Neidhardt FC (Ed)Escherichia coli andSalmonella typhinurium Vol 2 (pp 967–981). ASM Washington D.C.

    Google Scholar 

  • Robertson LA (1988) Aerobic denitrification and heterotrophic nitrification inThiosphaera pantotropha and other bacteria. Ph. D. Thesis, Delft University of Technology

  • Robertson LA & Kuenen JG (1988) Heterotrophic nitrification inThiosphaera pantotropha: Oxygen uptake and enzyme studies. J. Gen. Microbiol. 134: 857–863

    Google Scholar 

  • Robertson LA, Cornelisse R, de Vos P, Hadioetomo R & Kuenen JG (1989) Aerobic denitrification in various heterotrophic denitrifiers. Antonie van Leeuwenhoek 56: 289–299

    Google Scholar 

  • Robertson LA & Kuene JG (1990) Combined heterotrophic nitrification and aerobic denitrification inThiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek 57: 139–152

    Google Scholar 

  • Römermann D & Friedrich B (1985) Denitrification byAlcaligenes eutrophus is plasmid dependent. J. Bacteriol. 162: 852–854

    Google Scholar 

  • Sahm H, Cox RB & Quayle JR (1976) Metabolism of methanol byRhodopseudomonas palustris. J. Gen. Microbiol. 94: 313–322

    Google Scholar 

  • Salisbury SA, Forrest HS, Cruse WBT & Kennard O. (1979) A novel coenzyme from bacterial primary dehydrogenases. Nature 280: 843–844

    Google Scholar 

  • Sampaio M-JAM, da Silva EMR, Döbereiner J, Yates MG & Pedrosa FO (1981) Autotrophy and methylotrophy inDerxia gummosa, Azospirillum brasilense andAzospirillum lipoferum. In: Gibson AH & Newton WE (Eds) Current Perspectives in Nitrogen Fixation (p 444). Australian Academy of Science, Canberra

    Google Scholar 

  • Saraste M, Raitio M, Jalli T & Perämaa A (1986) A gene inParacoccus for subunit III of cytochrome oxidase. FEBS Lett. 206: 154–156

    Google Scholar 

  • Saraste M, Holm L, Lemieux L, Lübben M & van der Oost J (1991) The happy family of cytochrome oxidases. Biochem. Soc. Trans. 19: 608–612

    Google Scholar 

  • Sawers RG (1991) Identification and molecular characterization of a transcriptional regulator fromPseudomonas aeruginosa PAO 1 exhibiting structural and functional similarity to the FNR protein ofEscherichia coli. Mol. Microbiol. 5: 1469–1481

    Google Scholar 

  • Schlegel HG (1989) Aerobic hydrogen-oxidizing (Knallgas) bacteria. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 305–329). Science Tech Publishers, Madison WI and Springer Verlag Berlin

    Google Scholar 

  • Selander RK, Caugant DA & Whittam TS (1987) Genetic structure and variation in natural populations ofEscherichia coli andSalmonella typhinurium In: Neidhardt FC (Ed)Escherichia coli andSalmonella typhimurium, Vol 2 (pp 1625–1648). ASM, Washington D.C.

    Google Scholar 

  • Shapiro JA, Adhya SL & Bukhari AI (1977) Introduction: New pathways in the evolution of chromosome structure. In: Bukhari AI, Shapiro JA & Adhya SL (Eds) DNA: Insertion Elements, Plasmids and Episomes (pp 3–11). Cold Spring Harbor Laboratory

  • Sibold L & Souillard N (1988) Genetic anlysis of nitrogen fixation in methanogenic bacteria. In: Bothe H, de Bruijn FJ & Newton WE (Eds) Nitrogen Fixation: Hundred Years After (pp 705–710). Gustav Fischer, Stuttgart

    Google Scholar 

  • Silvestrini MC, Galeotti CL, Gervais M, Schinina E, Barra D, Bossa F & Brunori M (1989) Nitrite reductase fromPseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 254: 33–38

    Google Scholar 

  • Snyder SW & Hollocher TC (1987) Purification and some characteristics of nitrous oxide reductase fromParacoccus denitrificans. J. Biol. Chem. 262: 6515–6525

    Google Scholar 

  • Sobral BWS, Honeycutt RJ, Atherly AG & McClelland M (1991) Electrophoretic separation of the threeRhizobium meliloti replicons. J. Bacteriol. 173: 5173–5180

    Google Scholar 

  • Sonea S (1988) A bacterial way of life. Nature 331: 216

    Google Scholar 

  • Spiro S & Guest JR (1990) FNR and its role in oxygen-regulated gene expression inEscherichia coli. FEMS Microbiol. Rev. 75: 399–429

    Google Scholar 

  • Sprent JI & Raven JA (1985) Evolution of nitrogen-fixing symbiosis. Proc. Roy. Soc. Edinb. 85B: 215–237

    Google Scholar 

  • Stackebrandt E (1991) Unifying phylogeny and phenotypic diversity. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition, Vol 1 (pp 19–47). Springer Verlag, New York

    Google Scholar 

  • Stackebrandt E & Woese CR (1981). The evolution of prokaryotes. Symp. Soc. Gen. Microbiol. 32: 1–31

    Google Scholar 

  • Steinrücke P, Steffens GCM, Pauskus G, Buse G & Ludwig B (1987) Subunit II of cytochromec oxidase fromParacoccus denitrificans. DNA sequence, gene expression and the protein. Eur. J. Biochem. 167: 431–439

    Google Scholar 

  • Stewart V (1988) Nitrate respiration in relation to facultative metabolism in Enterobacteria. Microbiol. Rev. 52: 190–232

    Google Scholar 

  • Stewart V & Parales J (1988) Identification and expression of genesnarL andnarX of thenar (nitrate reductase) locus inEscherichia coli K 12. J. Bacteriol. 170: 1589–1597

    Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490

    Google Scholar 

  • Stouthamer AH (1976) Biochemistry and genetics of nitrate reductase in bacteria. Adv. Microbiol. Physiol. 14: 315–375

    Google Scholar 

  • Stouthamer AH (1988a) Dissimilatory reduction of oxidized nitrogen compounds. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 245–303). John Wiley and Sons, New York

    Google Scholar 

  • Stouthamer AH (1988b) Bioernergetics and yields with electron acceptors other than oxygen. In: Erickson LA & Fung O Y-C (Eds) Handbook of Anaerobic Respiration (pp 345–437). Marcel Dekker, New York

    Google Scholar 

  • Stouthamer AH (1991) Metabolic regulation including anaerobic metabolism inParacoccus denitrificans. J. Bioenerg. Biomembr. 23: 163–185

    Google Scholar 

  • Stowers MD & Eaglesham ARJ (1983) A stem-nodulatingRhizobium with physiological characteristics of both fast and slow growers. J. Gen. Microbiol. 129: 3651–3655

    Google Scholar 

  • Suwanto A & Kaplan S (1989) Physical and genetic mapping of theRhodobacter sphaeroides 2.4.1. genome: Presence of two unique circular chromosomes. J. Bacteriol. 171: 5850–5859

    Google Scholar 

  • Tamaki T, Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Nishiyama M, Horinouchi S & Beppu T (1991) Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcholdehydrogenase fromAcetobacter polyoxogenes. Biochim. Biophys. Acta 1088: 292–300

    Google Scholar 

  • Tsuji K, Tsien HC, Hanson RS, De Palma SR, Scholt R & La Roche S (1990) 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136: 1–10

    Google Scholar 

  • Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 267–287). Science Tech Publishers, Madison WI and Springer Verlag, Berlin

    Google Scholar 

  • Unden G & Trageser M (1991) Oxygen regulated gene expression inEscherichia coli: control of anaerobic respiration by the FNR protein. Antonie van Leeuwenhoek 59: 65–76

    Google Scholar 

  • Urata K & Satoh T (1991) Enzyme localization and orientation of the active site of dissimilatory nitrite reductase fromBacillus firmus. Arch. Microbiol. 156: 24–27

    Google Scholar 

  • Van Hartingsveldt J, Marinus MG & Stouthamer AH (1971) Mutants ofPseudomonas aeruginosa blocked in nitrate or nitrite dissimilation. Genetics 67: 469–482

    Google Scholar 

  • Van Hartingsveldt J & Stouthamer AH (1973) Mapping and characterization of mutants ofPseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J. Gen. Microbiol. 74:97–106

    Google Scholar 

  • Van 't Riet J, Wientjes FB, van Doorn J & Planta RJ (1979) Purification and characterization of the respiratory nitrate reductase ofBacillus licheniformis. Biochim. Biophys. Acta 576: 347–360

    Google Scholar 

  • Van Spanning RJM, Wansell C, Harms N, Oltmann LF & Stouthamer AH (1990) Mutagenesis of the gene encoding cytochromec 550 ofParacoccus denitrificans and analysis of the reulting effects. J. Bacteriol. 173: 986–996

    Google Scholar 

  • Van Spanning RJM, Wansell CW, de Boer T, Hazelaar MJ. Anazawa H, Harms N, Oltmann LF & Stouthamer AH (1991) Isolation and characterization of themoxJ, moxG, moxI andmoxR genes ofParacoccus denitrificans. Inactivation ofmoxJ, moxG andmoxR and the resultant effect on methylotrophic growth. J. Bacteriol. 173: 6948–6961

    Google Scholar 

  • Van Verseveld HW & Stouthamer AH (1992) Electron transport chain and couplex oxidative phosphorylation in methanol grownParacoccus denitrificans. Arch. Microbiol. 118: 13–20

    Google Scholar 

  • Van Verseveld HW & Stouthamer AH (1992) The genusParacoccus. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes, 2nd edition. Springer Verlag, New York (in press)

    Google Scholar 

  • Van Vliet F, Boyen A & Glansdorff N (1988) On interspecies gene transfer: the case of theargF gene ofEscherichia coli. Ann. Inst. Pasteur Microbiol. 139: 493–496

    Google Scholar 

  • Viebrock A & Zumft WG (1988) Molecular cloning, heterologous expression and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifyingPseudomonas stutzeri. J. Bacteriol. 170: 4658–4668

    Google Scholar 

  • Wheelis ML (1975) The genetics of dissimilatory pathways inPseudomonas. Ann. Rev. Microbiol. 29: 505–524

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271

    Google Scholar 

  • Woese CR (1991) Prokaryote systematics: The evolution of a science. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes, 2nd edition, Vol 1 (pp 3–18). Springer Verlag, New York

    Google Scholar 

  • Woese CR, Gibson J & Fox GE (1980) Do genealogical pattern in purple photosynthetic bacteria reflect interspecific gene transfer? Nature 283: 212–214

    Google Scholar 

  • Xu X, Matsuno-Yagi A & Yagi T (1991) The NADH-binding subunit of the energy-transducing NADH-ubiquinone oxidoreductase ofParacoccus denitrificans: Gene coding and deduced primary structure. Biochemistry 30: 6422–6428

    Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ & Woese CR (1985) Mitochondrial origins. Proc. Nat. Acad. Sci. 82: 4443–4447

    Google Scholar 

  • York MK & Stodolsky M (1981) Characterization of P1argF derivatives fromE. coli K 12 transduction.1.IS1 elements flank theargF segment. Mol. Gen. Genetics 181: 230–240

    Google Scholar 

  • Young JPW, Downer HL & Eardly BD (1991) Phylogeny of the phototrophicRhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173: 2271–2277

    Google Scholar 

  • Zimmermann A, Reimmann C, Galimanol M & Haas D (1991) Anaerobic growth and cyanide sythesis ofPseudomonas aeruginosa depend onanr, a regulatory gene homologous withfnrofEscherichia coli. Mol. Microbiol. 5: 1483–1490

    Google Scholar 

  • Zumft WG (1991) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes, 2nd edition, Vol 1 (pp 554–582). Springer Verlag, New York

    Google Scholar 

  • Zumft WG, Döhler K & Körner H (1985) Isolation and characterisation of transposon Tn 5- induced mutant ofPseudomonas perfectomarina defective in nitrous oxide respiration. J. Bacteriol. 163: 918–924

    Google Scholar 

  • Zumft WG, Viebrock A & Körner H (1988a) Biochemical and physiological aspects of denitrification. Symp. Soc. Gen. Microbiol. 42: 245–279

    Google Scholar 

  • Zumft WG, Döhler K, Körner H, Löchelt S, Viebrock A & Frunzke K (1988b) Defects in cytochromecdxAE1-dependent nitrite respiration of transposon Tn 5-induced mutants fromPseudomonas stutzeri. Arch. Microbiol. 149: 492–498

    Google Scholar 

  • Zumft WG & Kroneck PMH (1990) Metabolism of nitrous oxide. In: Revsbech NP & S∅rensen J (Eds) Denitrification in Soil and Sediment (pp 37–55). Plenum Press, New York

    Google Scholar 

  • Zumft WG, Viebrock-Sambale A & Braun C (1990) Nitrous oxide from denitrifyingPseudomonas stutzeri. Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP (GTP-binding proteins). Eur. J. Biochem. 192: 591–599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stouthamer, A.H. Metabolic pathways inParacoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie van Leeuwenhoek 61, 1–33 (1992). https://doi.org/10.1007/BF00572119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572119

Key words

Navigation