Skip to main content
Log in

Fuel homeostasis in the harbor seal during submerged swimming

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

  1. 1.

    The turnover rates and oxidation rates of plasma glucose, lactate, and free fatty acids (FFA) were measured in three harbor seals (average mass=40 kg) at rest or during voluntary submerged swimming in a water flume at 35% (1.3 m·s-1) and 50% (2 m·s-1) of maximum oxygen consumption (MO2max).

  2. 2.

    For seals resting in water, the total turnover rates for glucose, lactate, and FFA were 23.2, 26.2, and 7.5 μmol·min-1·kg-1, respectively. Direct oxidation of these metabolites accounted for approximately 7%, 27%, and 33% of their turnover and 3%, 7%, and 18% of the total ATP production, respectively.

  3. 3.

    For swimming seals,MO2max was achieved at a drag load equivalent to a speed of 3 m·s-1 and averaged 1.85 mmol O2·min-1·kg-1, which is 9-fold greater than resting metabolism in water at 18°C.

  4. 4.

    At 35% and 50%MO2max, glucose turnover and oxidation rates did not change from resting levels. Glucose oxidation contributed about 1% of the total ATP production during swimming.

  5. 5.

    At 50%MO2max, lactate turnover and anaerobic ATP production doubled, but the steady state plasma lactate concentration remained low at 1.1 mM. Lactate oxidation increased 63% but still contributed only 4% of the total ATP production. Anaerobic metabolism contributed about 1% of the total ATP production at rest and during swimming.

  6. 6.

    The plasma FFA concentration and turnover rate inereased only 24% and 37% over resting levels, respectively, at 50%MO2max. However, the oxidation rate increased almost 3.5-fold and accounted for 85% of the turnover. The percentage of total ATP produced (21%) from FFA oxidation at 35% and 50%MO2max did not increase greatly over that at rest.

  7. 7.

    Dive duration decreased from 78 s while resting in water to 28 s at 50%MO2max.

  8. 8.

    The RQ ranged from 0.78 at rest to 0.74 at 50%MO2max, indicating that fat was an important source of energy during submerged swimming.

  9. 9.

    By adjusting breath-hold duration during strenuous underwater swimming, harbor seals are able to maintain an aerobic, fat-based metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP :

adenosine-triphosphate

[LAC]:

lactate concentration

[GLU]:

glucose concentration

[FFA]:

free fatty acid concentration

MO 2 :

oxygen consumption

MO 2max :

maximum oxygen consumption

MCO 2 :

carbon dioxid production

RQ :

respiratory quotient

TG :

triglycerides

References

  • Bergmann SR, Carlson E, Dannen E, Sabel BE (1980) An improved assay with 4-(2-thiazolylazo)-resorcinol for non-esterified fatty acids in biological fluids. Clin Chem Acta 107:53–63

    Google Scholar 

  • Blazquez E, Castro M, Herrera E (1971) Effect of high-fat diet on pancreatic insulin release, glucose tolerance and hepatic gluconeogenesis in male rats. Rev Espan Fisol 27:297–304

    Google Scholar 

  • Castellini MA (1988) Visualizing metabolic transitions in aquatic mammals: does apnea plus swimming equal “diving”? Can J Zool 66:40–44

    Google Scholar 

  • Castellini MA, Murphy BJ, Fedak M, Ronald K, Gofton H, Hochachka PW (1985) Potentially conflicting metabolic demands of diving and exercise in seals. J Appl Physiol 58(2):392–399

    Google Scholar 

  • Castellini MA, Costa DP, Huntley AC (1987) Fatty acid metabolism in fasting elephant seal pups. J Comp Physiol 3:445–449

    Google Scholar 

  • Castellini MA, Davis RW, Kooyman GL (1988) Blood chemistry regulation during repetitive diving in Weddell seals. Physiol Zool 61(5):379–386

    Google Scholar 

  • Davis RW (1983) Lactate and glucose metabolism in the resting and diving harbor seal (Phoca vitulina) J Comp Physiol 153:275–288

    Google Scholar 

  • Davis RW, Williams TW, Kooyman GL (1985) Swimming metabolism of yearling and adult harbor sealsPhoca vitulina. Physiol Zool 58(5):590–596

    Google Scholar 

  • Depocas F, DeFreitas ASW (1970) Method for estimating rates of formation and interconversion of glucose-glycerol and glucoselactic acid in intact animals. Can J Physiol Pharmacol 48:557–560

    Google Scholar 

  • Elsner R, Gooden B (1983) Diving and asphyxia: A comparative study of animals and man. Cambridge University Press, Cambridge

    Google Scholar 

  • Elsner R (1986) Limits to exercise performance: some ideas from comparative studies. Acta Physiol Scand 128(Suppl 556):45–51

    Google Scholar 

  • Fedak MA, Pullen MR, Kanwisher J (1988) Circulatory responses of seals to periodic breathing: heart rate and breathing during exercise and diving in the laboratory and open sea. Can J Zool 66:53–60

    Google Scholar 

  • George JC, Vallyathan NV, Ronald K (1971) The harp seal,Pagophilus groenlandicus (Erxleben, 1777). VII. A histophysiological study of certain skeletal muscles. Can J Zool 49:25–30

    Google Scholar 

  • Guppy M, Hill RD, Schneider RC, Qvist J, Liggins GC, Zapol WM, Hochachka PW (1986) Microcomputer-assisted metabolic studies of voluntary diving of Weddell seals. Am J Physiol 250:R175–R187

    Google Scholar 

  • Havel RJ, Carlson LA (1963) Comparative turnover rates of free fatty acids and glycerol in blood of dogs under various conditions. pp 651–658 in Life Sciences No. 9. Pergamon New York

    Google Scholar 

  • Havel RJ, Carlson, LA, Eklund, LG, Holmgren, A (1964) Turnover rate and oxidation of different free fatty acids in man during exercise. J Appl Physiol 19:613–618

    Google Scholar 

  • Issekutz B Jr, Miller HI, Paul P, Rodahl K (1964) Source of fat oxidation in exercising dogs. Am J Physiol 207(3):583–58

    Google Scholar 

  • Issekutz B Jr, Paul P, Miller HI (1967) Metabolism in normal and pancreatectomized dogs during steady-state exercise. Am J PHysiol 213:857–862

    Google Scholar 

  • Issekutz B Jr, Paul P (1968) Intramuscular energy sources in exercising and pancreatectomized dogs. Am J Physiol 215:197–204

    Google Scholar 

  • Jangaard PM, Ackman RG, Burgher RD (1963) Component fatty acids of the blubber fat from the common or harbor sealPhoca vitulina concolor De Kay. Can J Biochem Physiol 41:2543–2546

    Google Scholar 

  • Jones GB (1965) Determination of specific activity of labeled blood glucose by liquid scintillation using glucose pentaacetate. Anal Biochem 12:249–258

    Google Scholar 

  • Jones DR, Fisher D, McTaggart S, West NH (1973) Heart rate during breath-holding and diving in the unrestrained harbor seal (Phoca vitulina richardi). Can J Zool 51:671–680

    Google Scholar 

  • Kettelhut IC, Foss MC, Migliorini RH (1980) Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Physiol 239:R437–R444

    Google Scholar 

  • Kooyman GL, Campbell WB (1972) Heart rates in freely diving Weddell seals,Leptonychotes weddellii. Comp Biochem Physiol [A] 43:31–36

    Google Scholar 

  • Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J Comp Physiol 138:335–346

    Google Scholar 

  • Malmendier CL, Delcroix C, Berman M (1974) Interrelations in the oxidative metabolism of free fatty acids, glucose, and glycerol in normal and hyperlipemic patients. J Clin Invest 54(2):461–476

    Google Scholar 

  • Mazzeo RS, Brooks GA, Schoeller DA, Budinger TF (1986) Disposal of blood (1-13C) lactate in humans during rest and exercise. J Appl Physiol 60:232–241

    Google Scholar 

  • Neptune EM Jr., Sudduth HC, Foreman DR (1969) Labile fatty acids of rat diaphragm muscle and their possible role as the major endogenous substrate for maintenance of respiration. J Biol Chem 234(7):1659–1660

    Google Scholar 

  • Oscai LB, Caruso RA, Wergeles AC (1982) Lipoprotein lipase hydrolyzes endogenous triacylglycerols in muscle of exercised rats. J Appl Physiol: Respirat Environ Exercise Physiol 52(4):1059–1063

    Google Scholar 

  • Puppione DL, Nichols AV (1970) Characterization of the chemical and physical properties of the serum lipoproteins of certain marine mammals. Physiol Chem Phys 2:49–58

    Google Scholar 

  • Roberts S, Samuels LT, Reinecke RM (1943) Previous diet and the apparent utilization of fat in the absence of the liver. Am J Physiol 140:639–644

    Google Scholar 

  • Reilly PEB (1975) Use of reverse isotope dilution analysis to determine blood plasma (l-(+)-14C-lactate specific radioactivity. Anal Biochem 64:37–44

    Google Scholar 

  • Schmidt-Nielsen K (1975) Animal physiology: Adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Shimizu S, Inoue K, Tani Y, Yamada H (1979) Enzymatic determination of serum free fatty acids. Anal Biochem 98:341–345

    Google Scholar 

  • Steele R, Wall JS, De Bodo RC, Altzuler N (1956) Carbohydrate metabolism of hypophysectomized dogs as studied with radioactive glucose. Am J Physiol 1187:25–31

    Google Scholar 

  • Taylor CR, Karas RH, Weibel ER, Hoppler H (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand. II. Reaching the limits of oxygen flow. Respir Physiol 67:7–26

    Google Scholar 

  • Williams TM, Kooyman GL (1990) The effects of exercise load on physiological responses of swimming seals and sea lions. J Comp Physiol 160:637–644

    Google Scholar 

  • Williams TM, Kooyman GL (1985) Swimming performance and hydrodynamic characteristics of harbor sealsPhoca vitulina. Physiol Zool 58(5):576–589

    Google Scholar 

  • Wolfe RR, Burke J (1977) Effect of burn trauma on glucose turnover, oxidation, and recycling in guinea pigs. Am J Physiol 233:E80–E85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R.W., Castellini, M.A., Williams, T.M. et al. Fuel homeostasis in the harbor seal during submerged swimming. J Comp Physiol B 160, 627–635 (1991). https://doi.org/10.1007/BF00571260

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571260

Key words

Navigation