Skip to main content
Log in

Theory of crack growth in rolling contact

  • Published:
Materials Science Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. V. Pinegin, Contact Strength and Rolling Resistance [in Russian], Mashinostroenie, Moscow (1969).

    Google Scholar 

  2. E. A. Shur, Rail Damage [in Russian], Transport, Moscow (1971).

    Google Scholar 

  3. Yu. V. Kolesnikov and E. M. Morozov, Contact Failure Mechanics [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. S. Way, “Pitting due to rolling contact,” J. Appl. Mech.,2, A49-A58 (1953).

    Google Scholar 

  5. T. Yamamoto, “Crack growth in lubricated rollers,” in: Solid Contact and Lubrication, H. S. Cheng and L. M. Keer (eds.), Vol. 39, (1980) (ASME, AMD), pp. 223–236.

  6. H. Yoshimura, C. A. Rubin, and G. T. Hahn, “A technique for studying crack growth under repeated rolling contact,” Wear,95, No. 1, 29–34 (1984).

    Google Scholar 

  7. P. E. Bold, M. W. Brown, and R. J. Allen, “Shear mode crack growth and rolling contact fatigue,” Wear,144, No. 2, 307–317 (1991).

    Google Scholar 

  8. Makita Taro, Kitakoga Shigefumi, Nakamura Keijiro, et al., “A continuous observation on rolling—sliding contact fatigue crack initiation and propagation (effect of viscosity and contamination of lubricant),” Trans. Jpn. Soc. Mech. Eng.,57, No. 539, 2400–2405 (1991).

    Google Scholar 

  9. L. M. Keer, M. D. Bryant, and G. K. Haritos, “Subsurface and surface cracking due to Hertzian contact,” Trans. ASME, J. Lubric. Tech.,104, No. 3, 347–351 (1982).

    Google Scholar 

  10. L. M. Keer and M. D. Bryant, “A pitting model for rolling contact fatigue,” Trans. ASME, J. Lubric Tech.,105, No. 2, 198–205 (1983).

    Google Scholar 

  11. A. F. Bower, “The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks,” Trans. ASME, J. Tribol.,110, No. 4, 704–711 (1988).

    Google Scholar 

  12. Goshima Takahito, Miyao Kaju, and Kamishima Yuuji, “Mutual interference of two surface cracks in a semi-infinite body due to a rolling contact,” Trans. Jpn. Soc. Mech. Eng. A,57, No. 533, 19–24 (1991).

    Google Scholar 

  13. A. D. Hearly and K. L. Johnson, “Mode II stress intensity factors for a crack parallel to the surface of an elastic half-space subjected to a moving point load,” J. Mech. Phys. Solids,33, No. 1, 61–81 (1985).

    Google Scholar 

  14. S. D. Sheppard, J. R. Barber, and M. Comninou, “Short subsurface cracks under conditions of slip and stick caused by a moving compressive load,” Trans. ASME, J. Appl. Mech.,52, No. 4, 811–817 (1985).

    Google Scholar 

  15. S. D. Sheppard, J. R. Barber, and M. Comninou, “Subsurface cracks under conditions of slip, stick, and separation caused by a moving compressive load,” Trans. ASME, J. Appl. Mech.,54, No. 2, 393–398 (1987).

    Google Scholar 

  16. T. E. Tallian, “A unified model for rolling contact life prediction,” Trans. ASME, J. Lubric. Tech.,104, No. 3, 340–346 (1982).

    Google Scholar 

  17. I. I. Kudish, “A mathematical model for fatigue wear and pitting,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 145–153 (1990).

  18. V. V. Panasyuk and A. E. Andreikiv, “Determining the working life of a quasibrittle body containing cracks on cyclic loading,” Fiz.-Khim. Mekh. Mater., No. 5, 35–40 (1975).

  19. A. E. Andreikiv, Three-Dimensional Aspects of Crack Theory [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  20. S. Ya. Yarema and A. I. Zboromirskii, “An analytic study on the growth of a fatigue crack arbitrarily oriented in biaxial nonuniform stress pattern,” Fiz.-Khim. Mekh. Mater., No. 6, 54–62 (1984).

  21. M. P. Savruk, Two-Dimensional Elasticity Topics for Bodies Containing Cracks [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  22. M. P. Savruk and P. N. Osiv, “Calculating the static crack propagation path,” Probl. Prochn., No. 11, 19–23 (1982).

  23. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, Stress Distributions around Cracks in Plates and Shells [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  24. V. V. Panasyuk (ed.), Failure Mechanics and Material Strength: Handbook in 4 volumes [in Russian], Vol. 1, Naukova Dumka, Kiev (1988).

    Google Scholar 

  25. A. Otsuka, K. Mori, and T. Miyata, “The condition of fatigue crack growth in mixed mode condition,” Eng. Fract. Mech.,7, No. 3, 429–439 (1975).

    Google Scholar 

  26. W. T. Shieh, “Compressive maximum shear crack initiation and propagation,” Eng. Fract. Mech.,9, No. 1, 37–54 (1977).

    Google Scholar 

  27. G. P. Marchenko, “The stresses around an edge crack in an elastic half-plane with a localized force acting at the boundary,” in: Proc. 16th Young Scientists' Conference at the Mechanics Institute, Ukr. Acad. Sci. [in Russian], Kiev (1991), Part 1, pp. 130–134, Deposited in VINITI, Nov. 12, 1991, No. 4259-V91.

  28. A. P. Datsyshin and G. P. Marchenko, “Interaction of curvilinear cracks with the boundary of an elastic half-plane,” Fiz.-Khim. Mekh. Mater., No. 5, 64–71 (1984).

  29. A. P. Datsyshin and G. P. Marchenko, “Singular integral equations applied to crack growth paths in bounded plates,” in: Integral Equations and Boundary-Value Problems in Mathematical Physics: Proceedings of an All-Union Conference [in Russian], DVO AN SSSR, Vladivostok (1992), Part 1, pp. 89–100.

    Google Scholar 

  30. D. Moore, Tribonics Principles and Applications [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  31. D. P. Rooke and D. A. Jones, “Stress intensity factors in fretting fatigue,” J. Strain Anal.,14, No. 1, 1–6 (1979).

    Google Scholar 

  32. O. P. Datsishin and G. P. Marchenko, “Edge crack growth,” Fiz.-Khim. Mekh. Mater., No. 5, 42–48 (1991).

  33. O. N. Romaniv, E. A. Shur, V. N. Simin'kovich, et al., “Cracking resistance in pearlitic eutectoid steels. Part 2. Steel failure on cyclic loading,” Fiz. Khim. Mekh. Mater., No. 2, 37–45 (1983).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 29, No. 4, pp. 49–61, July–August, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datsishin, O.P., Marchenko, G.P. & Panasyuk, V.V. Theory of crack growth in rolling contact. Mater Sci 29, 373–383 (1994). https://doi.org/10.1007/BF00566446

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566446

Keywords

Navigation