Skip to main content
Log in

Dislocation motion in MgO crystals under plate impact

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dislocation dynamics in MgO single crystals is studied by means of plate impact experiments in which specimens are subjected to stress pulses of 214 to 376 MPa resolved shear stress with duration in the range of 0.09 to 0.23μsec. Dislocation structures in the recovered crystals are observed by an etch pit technique and by transmission electron microscopy. Etch pit studies show that inclusions play a role in the generation of interior glide bands and that there is a 20 to 40-fold increase in dislocation densities outside the glide bands. Assuming the average dislocation velocity is approximately proportional to the applied stress the drag coefficient for MgO at dislocation velocities of 1 to 2 km sec−1 is observed to be 5×10−5 Nsec m−2. Transmission electron microscopy determines the spacing and curvature of dislocations in glide bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Johnston andJ. J. Gilman,J. Appl. Phys. 30 (1959) 129.

    Google Scholar 

  2. P. Kumar andR. J. Clifton,ibid. 50 (1979) 4747.

    Google Scholar 

  3. R. N. Singh andR. L. Coble,ibid. 45 (1974) 981.

    Google Scholar 

  4. Idem, ibid. 45 (1974) 990.

    Google Scholar 

  5. E. Y. Gutmanas, E. M. Nadgornyi andA. V. Stepanov,Sov. Phys. Solid State 5 (1963) 743.

    Google Scholar 

  6. H. Strunk,Mater. Sci. Eng. 26 (1976) 231.

    Google Scholar 

  7. A. R. Chaudhuri, J. R. Patel andL. G. Rubin,J. Appl. Phys. 33 (1962) 2736.

    Google Scholar 

  8. R. W. Rohde andC. H. Pitt,ibid. 38 (1967) 876.

    Google Scholar 

  9. H. L. Prekel andH. Conrad,“Dislocation Dynamics”, edited by A. R. Rosenfield,et al. (McGraw-Hill, 1968) p. 431.

  10. K. M. Jassby andT. Vreeland, Jr.,Phil. Mag. 21 (1970) 1147.

    Google Scholar 

  11. D. P. Pope andT. Vreeland Jr,ibid. 20 (1969) 1163.

    Google Scholar 

  12. H. D. Guberman,Acta Metall. 16 (1968) 713.

    Google Scholar 

  13. R. L. Bell andW. Bonfield,Phil. Mag. 9 (1964) 9 (see also [7]).

    Google Scholar 

  14. P. Haasen,“Dislocation Dynamics”, edited by A. R. Rosenfieldet al. (McGraw-Hill, 1968) p. 701.

  15. H. W. Schadler,Acta Metall. 12 (1964) 861.

    Google Scholar 

  16. D. W. Moon andT. Vreeland, Jr.,J. Appl. Phys. 39 (1968) 1766.

    Google Scholar 

  17. V. R. Parameswaran andJ. Weertman,Met. Trans. 2 (1971) 1233.

    Google Scholar 

  18. T. Suzuki,“Dislocation Dynamics”, edited by A. R. Rosenfield,et al. (McGraw-Hill, 1968) p. 551.

  19. F. C. Frank andW. T. Read,Phys. Rev. 79 (1950) 722.

    Google Scholar 

  20. J. S. Koehler,ibid. 86 (1952) 52.

    Google Scholar 

  21. S. Amelinckx andW. Dekeyser,J. Appl. Phys. 29 (1958) 1000.

    Google Scholar 

  22. A. S. Tetelman,Acta Metall. 10 (1962) 813.

    Google Scholar 

  23. J. Weertman, “Metallurgical Effects at High Strain Rates” (Plenum, New York, 1973) p. 319.

    Google Scholar 

  24. C. S. Smith,Trans. Met. Soc. AIME 212 (1958) 574.

    Google Scholar 

  25. Y. Y. Earmme andJ. H. Weiner,J. Appl. Phys. 48 (1977) 3317.

    Google Scholar 

  26. J. H. Weiner andM. Pear,Phil. Mag. 31 (1975) 679.

    Google Scholar 

  27. F. C. Frank, “Report of the Conference on Strength of Solids” (Physical Society, London, 1948) p. 46.

    Google Scholar 

  28. P. Kumar andR. J. Clifton,J. Appl. Phys. 48 (1977) 4850.

    Google Scholar 

  29. J. E. Vorthman, PhD thesis, Washington State University (1979).

  30. J. E. Flinn andR. F. Tinder,Scripta Metall. 8 (1974) 689.

    Google Scholar 

  31. Y. Chen, private communication.

  32. R. J. Stokes,J. Amer. Ceram. Soc. 49 (1966) 39.

    Google Scholar 

  33. G. D. Miles,J. Appl. Phys. 36 (1975) 1471.

    Google Scholar 

  34. R. J. Stokes,J. Amer. Ceram. Soc. 48 (1965) 60.

    Google Scholar 

  35. R. N. Singh andR. L. Coble,J. Appl. Phys. 45 (1974) 5129.

    Google Scholar 

  36. P. Kumar andR. J. Clifton,ibid. 48 (1977) 1366.

    Google Scholar 

  37. L. M. Barker andR. E. Hollenbach,ibid. 41 (1970) 4208.

    Google Scholar 

  38. J. H. Gladstone andT. P. Dale,Trans. Roy. Soc. (London) A148 (1958) 887.

    Google Scholar 

  39. H. B. Kirkpatrick andS. Amelinckx,Rev. Sci. Instrum. 33 (1962) 488.

    Google Scholar 

  40. G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties” (M.I.T. Press, 1971).

  41. W. E. Elkington, G. Thomas andJ. Washburn,J. Amer. Ceram. Soc. 46 (1963) 307.

    Google Scholar 

  42. M. J. P. Musgrave, “Crystal Acoustics” (Holden Day, San Francisco, 1970) p. 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.S., Clifton, R.J. Dislocation motion in MgO crystals under plate impact. J Mater Sci 19, 1428–1438 (1984). https://doi.org/10.1007/BF00563037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00563037

Keywords

Navigation