Skip to main content
Log in

Genome of the European elk papillomavirus (EEPV)

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The genome of the European elk papillomavirus (EEPV) was found to be 8,095 base pairs (bp) long and its genetic organization was similar to that of other papillomaviruses. Ten open reading frames (ORFs), designated E1-E7 and L1-L3, were identified in the genome, all located on one strand. The presence of the L3 ORF is rare among the papillomaviruses and to date has only been identified in the genomes of EEPV, the deer papillomavirus (DPV) and the Cottontail papillomavirus (CRPV). The ORF is well conserved beteeen DPV and EEPV with regard to both length and sequence. Potential promoter regions were identified at the 5′-end of the E6 ORF, at the 3′-end of the E1 ORF and downstream of the L1 ORF. Furthermore, two potential polyadenylation signals were found, one located in the long control region (LCR), downstream of the L1 ORF, and another preceding the L2 ORF. The EEVP genome is closely related to the genome of the DPV, the most highly conserved regions being ORFs E1 (70%), E5 (69%), and L1 (74%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfister H. Biology and biochemistry of papillomaviruses, Rev Physiol Biochem Pharmacol,99:111–181, 1984.

    Google Scholar 

  2. Stenlund A., Moreno-Lopez J., Ahola H., & Pettersson U. European elk papillomavirus; characterization of the genome, induction of tumors in animals, and transformation in vitro, J Virol48:370–376, 1983.

    Google Scholar 

  3. Groff D.E., Sundberg J.P., & Lancaster W.D. Extrachromosomal deer fibromavirus DNA in deer fibromas and virus-transformed mouse cells, Virology131:546–550, 1983.

    Google Scholar 

  4. Moreno-Lopez J., Ahola H., Eriksson A., Bergman P., & Pettersson U. Reindeer papillomavirus transforming properties correlate with a highly conserved E5 region, J Virol61:3394–3400, 1987.

    Google Scholar 

  5. Olson C., Gordon D.E., Robl M.G., & Lee K.P. Oncogenicity of bovine papillomavirus, Arch Environ Health19:827–837, 1969.

    Google Scholar 

  6. Koller L.D., & Olson C. Attempted transmission of warts from man, cattle, and horses and of deer fibroma, to selected hosts. J Invest Dermatol58:366–368, 1972.

    Google Scholar 

  7. Dvoretzky I., Shober R., Chattopadhyay S.K., & Lowy D.R. A quantitative in vitro focus assay for bovine papilloma virus. Virology103:369–375, 1980.

    Google Scholar 

  8. Friedman J.C., Levy J.P., Lasneret J., Thomas M., Boiron M., & Bernard J. Induction de fibromes sous-cutanes chez le hamster dore par inoculation dextraits acellularies de papillomes bovins. C R Acad Sci, Paris,257:2328–2331, 1963.

    Google Scholar 

  9. Moreno-Lopez J., Mörner T., Pettersson U. Papillomavirus DNA associated with pulmonary fibromatosis in European elk, J Virol57:1173–1176, 1986.

    Google Scholar 

  10. Ahola H., Bergman P., Ström A.C., Moreno-Lopez J., & Pettersson U. Organization and expression of the transforming region from the European elk papillomavirus (EEPV), Gene50:195–205, 1986.

    Google Scholar 

  11. Chen E.Y., Howley P.M., Levinson A.D. & Seeburg P.H. The primary structure and genetic organization of the bovine papillomavirus type 1 genome, Nature299:529–534, 1982.

    Google Scholar 

  12. Ahola H., Stenlund A., Moreno-Lopez J., & Pettersson U. Sequences of bovine papillomavirus type 1 DNA—functional and evolutionary implications, Nucl Acid Res11:2639–2650, 1983.

    Google Scholar 

  13. Potter H.L.Jr., & Meinke W.J. Nucleotide sequence of bovine papillomavirus type 2 late region, J Gen Virol66:187–193, 1985.

    Google Scholar 

  14. Groff D.E., & Lancaster W.D. Molecular cloning and nucleotide sequence of deer papillomavirus, J Virol56:85–91, 1985.

    Google Scholar 

  15. Schwartz A., Durst M., Demankowski C., Lattermann O., Zech R., Wolfsperger E., Suhai S., & zur Hausen H. DNA sequence and genome organization of genital human papillomavirus type 6b, EMBO J2:2341–2348, 1983.

    Google Scholar 

  16. Seedorf K., Krämmer G., Durst M., Suhai S., & Röwekamp W.G. Human papillomavirus type 16 DNA sequence, Virology145:181–185, 1985.

    Google Scholar 

  17. Maxam A., & Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavage, Methods enzymol65:499–560, 1980.

    Google Scholar 

  18. Devereux J., Haeberli P., & Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res12:387–395, 1984.

    Google Scholar 

  19. Giri I., Danos O., Yaniv M. Genomic structure of the cottontail rabbit (Shope) papillomavirus. Proc Natl. Acad Sci USA82:1580–1584, 1985.

    Google Scholar 

  20. Pilacinski W.P., Glassman D.L., Krzyzek A., Sadowski P.L., & Robbins A.K. Cloning and expression in Escherichia Coli of the bovine papillomavirus L1 and L2 open reading frames. Biotechnology1:356–360, 1984.

    Google Scholar 

  21. Baker C.C., & Howley P.M. Differential promoter utilization by the bovine papillomavirus in transformed cells and productively infected wart tissues, EMBO J6:1027–1035, 1987.

    Google Scholar 

  22. Stenlund A., Bream G.L., & Botchan M.R. A promoter with an internal regulatory domain is part of the origin of replication in BPV-1. Science236:1666–1671, 1987.

    Google Scholar 

  23. Brady J., Radonovich M., Vodkin M., Natarajan V., Thoren M., Das G., Janik J., & Salzman P. Sitespecific base substitution and deletion mutations that enhance or suppress transcription of the SV40 major late RNA. Cell31:625–633, 1982.

    Google Scholar 

  24. Brady J., Radonovich M., Thoren M., Das G., & Salzman N.P. Simian virus 40 major late promoter: an upstream DNA sequence required for efficient in vitro transcription, Mol Cell Biol4:133–141, 1984.

    Google Scholar 

  25. Spalholz B., Lambert P.F., Yee C.L., & Howley P.M. Bovine papillomavirus transcriptional regulation: localization of the E2-responsive elements of the long control region, J Virol61:2128–2137, 1987.

    Google Scholar 

  26. Moskaluk C., & Bastia D. The E2 “gene” of bovine papillomavirus encodes an enhancer-binding protein, Proc Natl Acad Sci USA84:1215–1218, 1987.

    Google Scholar 

  27. Danos O., Kantish M., & Yaniv M. Human papillomavirus la complete DNA sequence: a novel type of genomeorganization among papovaviridae, EMBO J1:231–236, 1982.

    Google Scholar 

  28. Zachow K.R., R.S., & Faras A.J. Nucleotide sequence and genome organization of human papillomavirus type 5, Virology158:251–254, 1987.

    Google Scholar 

  29. Fuchs P.G., Ianer T., Weninger J., & Pfister H. Epidermodysplasia verruciformis-associated human papillomavirus 8: genomic sequence and comparative analysis, J Virol58:626–634, 1986.

    Google Scholar 

  30. Dartmann K., Schwartz E., Gissman L., & zur Hausen H. The nucleotide sequence and genome organization of human papilomavirus type 11, Virology151:124–130, 1986.

    Google Scholar 

  31. Cole S.T. & Danos O. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome, J Mol Biol193:599–608, 1986.

    Google Scholar 

  32. Cole S.T., & Streeck R.E. Genome organization and nucleotide sequnce of human papillomavirus type 33, which is associated with cervical cancer, J Virol58:991–995, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, A., Ahola, H., Pettersson, U. et al. Genome of the European elk papillomavirus (EEPV). Virus Genes 1, 123–133 (1988). https://doi.org/10.1007/BF00555932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555932

Key words

Navigation