Skip to main content
Log in

The effect of particle content and matrix grain size on the recrystallisation of two-phase aluminium-iron alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The recrystallisation of aluminium alloys in the composition range 0.002 to 1.08 wt% iron has been followed metallographically and by hardness measurements. The recrystallisation of solid-solution alloys was retarded as the iron content increased, whereas that of the two-phase alloys was accelerated. This latter effect was associated with a marked increase in nucleation rate, with no significant change of growth rate, as the Al3Fe particle spacing decreased from 15 to 4μm. Decreasing the grain size of the two-phase alloys, at constant composition, also caused an acceleration of recrystallisation, the magnitude of which decreased as the Al3Fe content increased. These effects have been shown to be independent of the size of the Al3Fe particles, within the range studied (diameters 0.6 to 2.2μm). The results are discussed in terms of a model (which is based on metallographic observations) of nucleation at matrix grain boundaries and at particle/ matrix interfaces. It is suggested that the retardation of nucleation, observed by other workers, in more closely spaced dispersions, occurs because nucleation at particle/ matrix interfaces becomes difficult when the inter-particle spacing becomes of the same order as the diameter of the sub-structure of the deformed matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Clarebrough, M. E. Hargreaves, D. Michell, andG. W. West,Proc. Roy. Soc. A 215 (1952) 507.

    Google Scholar 

  2. M. Bever andL. B. Tickner,Acta Met. 1 (1953) 116.

    Google Scholar 

  3. M. E. Hargreaves, M. H. Loretto, L. M. Clarebrough, andR. L. Segall, “Recovery and Recrystallisation of Metals”, edited by L. Himmel (Interscience, 1963), p. 63.

  4. M. H. Loretto andA. J. White,Acta Met. 9 (1961) 512.

    Google Scholar 

  5. H. Conrad andB. Christ (op. cit. ref. 3), p. 124.

  6. O. Johari andG. Thomas,Acta Met. 12 (1964) 679.

    Google Scholar 

  7. P. A. Beck andP. R. Sperry,J. Appl. Phys. 21 (1950) 150.

    Google Scholar 

  8. J. E. Bailey,Phil. Mag. 5 (1960) 833.

    Google Scholar 

  9. J. E. Bailey andP. B. Hirsch,Proc. Roy Soc. A 267 (1962) 11.

    Google Scholar 

  10. P. W. Davies, A. P. Greenough, andB. Wilshire,Phil. Mag. 6 (1961) 795.

    Google Scholar 

  11. M. Cook andT. LL. Richards,J. Inst. Met. 73 (1947) 1.

    Google Scholar 

  12. T. K. Aust andJ. W. Rutter,Trans. Met. Soc. Amer. Inst. Min. Metall. Engrs. 218 (1960) 682.

    Google Scholar 

  13. K. Lücke andK. Detert,Acta Met. 5 (1957) 628.

    Google Scholar 

  14. K. Lücke andP. Stüwe (op. cit. ref. 3), p. 171.

  15. J. W. Martin,Metallurgia 55 (1957) 161.

    Google Scholar 

  16. T. LL. Richards andS. F. Pugh,J. Inst. Met. 88 (1959) 141.

    Google Scholar 

  17. W. M. Williams andR. Eborall,ibid 81 (1952) 501.

    Google Scholar 

  18. V. A. Phillips andA. Phillips,ibid, p. 185.

    Google Scholar 

  19. M. K. B. Day,Mem. Sci. Rev. Mét. 56 (1959) 201.

    Google Scholar 

  20. R. L. Rickett andC. W. Leslie,Trans. Amer. Soc. Metals 51 (1959) 310.

    Google Scholar 

  21. P. A. Beck,Trans. Amer. Inst. Min. Metall. Engrs. 137 (1940) 234.

    Google Scholar 

  22. E. A. Bloch,Met. Rev. 6 (1961) 193.

    Google Scholar 

  23. M. Adachi andN. J. Grant,Trans. Met. Soc. Amer. Inst. Min. Metall. Engrs. 218 (1960) 881.

    Google Scholar 

  24. O. Preston andN. J. Grant,ibid 221 (1961) 164.

    Google Scholar 

  25. A. Gatti andR. Fullman,ibid 215 (1959) 762.

    Google Scholar 

  26. K. Detert andJ. Ziebs,ibid 233 (1965) 51.

    Google Scholar 

  27. N. Ryum,J. Inst. Met. 94 (1966) 191.

    Google Scholar 

  28. R. D. Doherty andJ. W. Martin,ibid 91 (1962) 332.

    Google Scholar 

  29. Idem, Trans. Amer. Soc. Metals 57 (1964) 874.

    Google Scholar 

  30. A. Saulnier, M. Croutzeilles, andP. Mirand, “Proceedings of the Fifth International Conference on Electron Microscopy” (Academic Press, 1962), p. K2.

  31. R. B. Shaw, L. A. Shepard, L. A. Starr, andJ. E. Dorn,Trans. Amer. Soc. Metals 45 (1953) 249.

    Google Scholar 

  32. J. E. Hilliard andR. W. Cahn,Trans. Met. Soc. Amer. Inst. Min. Metall. Engrs. 221 (1961) 344.

    Google Scholar 

  33. J. K. Edgar,ibid 180 (1949) 225.

    Google Scholar 

  34. P. R. Swann, Symposium on “Electron Microscopy and Strength of Solids” (Interscience, 1963).

  35. W. C. Leslie, J. T. Michalak, andF. W. Aul, “Iron and Its Dilute Solid-Solutions” (AIME, 1963), p. 119.

  36. C. Antonione, G. Della Gatta, andG. Venturello,Trans. Met. Soc. Amer. Inst. Min. Metall. Engrs. 230 (1964) 700.

    Google Scholar 

  37. A. T. English andW. A. Backofen,ibid, p. 396.

    Google Scholar 

  38. H. Hu (op. cit. ref. 3), p. 311.

  39. J. M. C. Li,J. Appl. Phys. 33 (1962) 2958.

    Google Scholar 

  40. P. A. Beck andP. R. Sperry,ibid 21 (1950) 150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mould, P.R., Cotterill, P. The effect of particle content and matrix grain size on the recrystallisation of two-phase aluminium-iron alloys. J Mater Sci 2, 241–255 (1967). https://doi.org/10.1007/BF00555381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555381

Keywords

Navigation