Skip to main content
Log in

Effect of dietary carbohydrates and ethanol on expression of genes encodingsn-glycerol-3-phosphate dehydrogenase, aldolase, and phosphoglycerate kinase inDrosophila larvae

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The genes encoding glycolytic enzymes inDrosophila form a group of functionally related genes that may be coordinately regulated and thus controlled by common factors. We have examined the effect of dietary carbohydrates and ethanol on expression of the genes encoding glycerol-3-phosphate dehydrogenase (GPDH), aldolase (ALD), and phosphoglycerate kinase (PGK) inD. melanogaster larvae. GPDH activity and transcript abundance increased in response to ethanol and additional amounts of several different carbohydrates. In addition, the levels of two alternatively processedGpdh transcripts were differentially regulated by the treatments. The nutritional conditions tested had little or no effect on the activities and transcript levels of ALD and PGK. These results indicate that changes in dietary conditions affect expression of specific genes and do not evoke a general response from genes involved in cellular metabolism. The observation that dietary carbohydrates and ethanol increaseGpdh expression without affecting expression ofAld andPgk reinforces previous suggestions that dietary carbon can be diverted by GPDH from glycolytic catabolism into lipid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beenakkers, A. M. T. (1969). Carbohydrate and fat as a fuel for insect flight.J. Insect Physiol. 15353.

    Google Scholar 

  • Beisenherz, G. (1955). Triosephosphate isomerase from calf muscle.Methods Enzymol. 1387.

    Google Scholar 

  • Benkel, B. F., and Hickey, D. A. (1986). Glucose repression of amylase gene expression inDrosophila melanogaster.Genetics 114137.

    Google Scholar 

  • Bewley, G. C. (1983). The genetic and epigenetic control ofsn-glycerol-3-phosphate dehydrogenase isozyme expression during the development ofDrosophila melanogaster. In Rattazzi, M. C., Scandalios, J. G., and Whitt, G. S. (eds.),Isozymes: Current Topics in Biological and Medical Research, Vol. 9 Liss, New York, pp. 33–62.

    Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem. 72248.

    Google Scholar 

  • Chirgwin, J. M., Pryzbyla, A. E., McDonald, R. J., and Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 185294.

    Google Scholar 

  • Cook, J. L., Bewley, G. C., and Shaffer, J. B. (1988).Drosophila sn-glycerol-3-phosphate dehydrogenase isozymes are generated by alternate pathways of RNA processing resulting in different carboxyl-terminal amino acid sequences.J. Biol. Chem. 26310858.

    Google Scholar 

  • Fernandez-Almonacid, R., and Rosen, O. M. (1987). Structure and ligand specificity of theDrosophila melanogaster insulin receptor.Mol. Cell. Biol. 72718.

    Google Scholar 

  • Geer, B. W., and Laurie-Ahlberg, C. C. (1984). Genetic variation in the dietary sucrose modulation of enzyme activities inDrosophila melanogaster.Genet. Res. Cambr. 43307.

    Google Scholar 

  • Geer, B. W., Martensen, D. V., Downing, B. C., and Muzyka, G. S. (1972). Metabolic changes during spermatogenesis and thoracic tissue maturation inDrosophila hydei.Dev. Biol. 28390.

    Google Scholar 

  • Geer, B. W., Kelley, K. R., Pohlman, T. H., and Yemm, S. J. (1975). A comparison of rat andDrosophila spermatazoan metabolisms.Comp. Biochem. Physiol. 50B41.

    Google Scholar 

  • Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A., and Yemm, S. J. (1976). Regulation of the oxidative NADP-enzyme tissue levels inDrosophila melanogaster. I. Modulation by dietary carbohydrate and lipid.J. Exp. Zool. 19515.

    Google Scholar 

  • Geer, B. W., Woodward, C. G., and Marshall, S. D. (1978). Regulation of the oxidative NADP-enzyme tissue levels inDrosophila melanogaster. II. The biochemical basis of dietary carbohydrate and D-glycerate modulation.J. Exp. Zool. 203391.

    Google Scholar 

  • Geer, B. W., Lindel, D. L., and Lindel, D. M. (1979). Relationship of the oxidative pentose shunt pathway to lipid synthesis inDrosophila melanogaster.Biochem. Genet. 17881.

    Google Scholar 

  • Geer, B. W., Williamson, J. H., Cavener, D. R., and Cochrane, B. J. (1981). Dietary modulation of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase inDrosophila. In Bhaskaran, G., Friedman, S., and Rodriguez, J. G. (eds.),Current Topics in Insect Endocrinology and Nutrition Plenum, New York, pp. 253–281.

    Google Scholar 

  • Geer, B. W., McKechnie, S. W., and Langevin, M. L. (1983). Regulation ofsn-glycerol-3-phosphate dehydrogenase inDrosophila melanogaster larvae by dietary ethanol and sucrose.J. Nutr. 1131632.

    Google Scholar 

  • Geer, B. W., Langevin, M. L., and McKechnie, S. W. (1985). Dietary ethanol and lipid synthesis inDrosophila melanogaster.Biochem. Genet. 23607.

    Google Scholar 

  • Goodridge, A. G. (1987). Dietary regulation of gene expression: Enzymes involved in carbohydrate and lipid metabolism.Annu. Rev. Nutr. 7157.

    Google Scholar 

  • Laskey, R. A. (1980). The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis.Meth. Enzymol. 65363.

    Google Scholar 

  • Lissemore, J. L., Colbert, J. T., and Quail, P. H. (1987). Cloning of cDNA for phytochrome from etiolatedCucurbita and coordinate photoregulation of the abundance of two distinct phytochrome transcripts.Plant Mol. Biol. 8485.

    Google Scholar 

  • McKechnie, S. W., and Geer, B. W. (1984). Regulation of alcohol dehydrogenase inDrosophila melanogaster by dietary alcohol and carbohydrate.Insect Biochem. 14231.

    Google Scholar 

  • O'Brien, S. J., and MacIntyre, R. J. (1972). The α-glycerophosphate cycle inDrosophila melanogaster. I. Biochemical and developmental aspects.Biochem. Genet. 7141.

    Google Scholar 

  • O'Connell, P., and Rosbash, M. (1984). Sequence, structure, and codon preference of theDrosophila ribosomal protein 49 gene.Nucl. Acids Res. 125495.

    Google Scholar 

  • Sang, J. H. (1956). The quantitative nutritional requirements ofDrosophila melanogaster.J. Exp. Biol. 3345.

    Google Scholar 

  • Smith, C. W. J., Patton, J. G., and Nadal-Ginard, B. (1989). Alternative splicing in the control of gene expression.Annu. Rev. Genet. 23527.

    Google Scholar 

  • Sun, X.-H., Lis, J. T., and Wu, R. (1988a). The positive and negative transcriptional regulation of theDrosophila Gapdh-2 gene.Genes Dev. 2743.

    Google Scholar 

  • Sun, X.-H., Tso, J. Y., Lis, J., and Wu, R. (1988b). Differential regulation of the two glyceraldehyde-3-phosphate dehydrogenase gene duringDrosophila development.Mol. Cell. Biol. 85200.

    Google Scholar 

  • von Kalm, L., Weaver, J., DeMarco, J., MacIntyre, R. J., and Sullivan, D. T. (1989). Structural characterization of the α-glycerol-3-phosphate dehydrogenase-encoding gene ofDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 865020.

    Google Scholar 

  • Ward, C. W., and Schofield, P. J. (1967). Glycolysis inHaemonchus contortus larvae and rat liver.Comp. Biochem. Physiol. 2233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Institutes of Health Grant GM26830 to D.T.S. and National Institutes of Health Grant AA06702 to B.W.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lissemore, J.L., Baumgardner, C.A., Geer, B.W. et al. Effect of dietary carbohydrates and ethanol on expression of genes encodingsn-glycerol-3-phosphate dehydrogenase, aldolase, and phosphoglycerate kinase inDrosophila larvae. Biochem Genet 28, 615–630 (1990). https://doi.org/10.1007/BF00553954

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553954

Key words

Navigation