Skip to main content
Log in

Free volume theories of the glass transition and the special case of metallic glasses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Theories based on the concepts of free volume and the existence of holes in liquids are briefly reviewed. Available experimental data on the changes in specific heat and thermal expansion at the glass transition temperature and the temperature dependence of viscosity near transition have been utilized to evaluate the hole formation energy and critical hole size in palladium-, platinum- and gold-based metallic glasses. It has been found that in conformity with theoretical predictions, transport in metallic glasses occurs by the movement of highly ionized atoms. A linear relationship exists between the hole formation energy and glass transition temperature of metallic glasses. It is suggested that a high energy of hole formation is a necessary criterion for easy vitrification of metallic melts. The behaviour of vacancies in crystalline metals is compared with the behaviour of holes in metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Cohen andD. Turnbull,J. Chem. Phys. 31 (1959) 1164.

    Google Scholar 

  2. G. S. Cargill III,Solid State Physics 30 (1975) 227.

    Google Scholar 

  3. H. S. Chen andD. Turnbull,J. Chem. Phys. 48 (1968) 2560.

    Google Scholar 

  4. H. S. Chen,J. Non-Cryst. Solids 12 (1973) 333.

    Google Scholar 

  5. H. S. Chen andD. Turnbull,Acta Met. 17 (1969) 1021.

    Google Scholar 

  6. D. E. Polk andH. S. Chen,J. Non-Cryst. Solids 15 (1974) 165.

    Google Scholar 

  7. H. S. Chen, J. T. Krause andE. A. Sigety,ibid 13 (1973) 321.

    Google Scholar 

  8. H. S. Chen, J. T. Krause andE. Coleman,ibid 18 (1975) 157.

    Google Scholar 

  9. H. S. Chen andM. Goldstein,J. Appl. Phys. 43 (1972) 1642.

    Google Scholar 

  10. P. Ramachandrarao, B. Cantor andR. W. Cahn,J. Non-Cryst. Solids 24 (1977) 109.

    Google Scholar 

  11. S. Glasstone, K. J. Laidler andH. Eyring, “Theory of Rate Processes” (McGraw-Hill, New York, 1941) p. 477.

    Google Scholar 

  12. N. Hirai andH. Eyring,J. Appl. Phys. 29 (1958) 810.

    Google Scholar 

  13. Idem, J. Polymer Sci. 37 (1959) 51.

    Google Scholar 

  14. A. J. Batschinski,Z. Phys. Chem. 84 (1913) 644.

    Google Scholar 

  15. A. K. Doolittle,J. Appl. Phys. 22 (1951) 471.

    Google Scholar 

  16. A. K. Doolittle andD. B. Doolittle,J. Appl. Phys. 26 (1957) 901.

    Google Scholar 

  17. J. H. Hildebrand andR. L. Scott, “Regular Solutions” (Prentice-Hall, New Jersey, 1962), p. 60.

    Google Scholar 

  18. A. Bondi,J. Phys. Chem. 58 (1954) 929.

    Google Scholar 

  19. M. F. Williams, R. F. Landel andJ. D. Ferry,J. Amer. Chem. Soc. 77 (1955) 3701.

    Google Scholar 

  20. T. G. Fox andP. J. Flory,J. Appl. Phys. 21 (1951) 581.

    Google Scholar 

  21. F. Bueche,J. Chem. Phys. 30 (1959) 748.

    Google Scholar 

  22. D. Turnbull andM. H. Cohen,ibid 52 (1970) 3038.

    Google Scholar 

  23. R. N. Haward, in “Molecular Behaviour and the Development of Polymeric Materials”, edited by A. Ledwith and A. M. North (Chapman and Hall, London, 1975), p. 404.

    Google Scholar 

  24. D. Turnbull andB. G. Bagley, in “Treatise on Solid State Chemistry”, Vol. 5, edited by N. B. Hannay (Plenum Press, New York, 1975), p. 513.

    Google Scholar 

  25. B. G. Bagley, in “Amorphous and Liquid Semiconductors”, edited by J. Tauc (Plenum Press, New York, 1974), p. 1.

    Google Scholar 

  26. J. Frenkel, “Kinetic Theory of Liquids” (Dover Publications, New York, 1955), p. 93.

    Google Scholar 

  27. P. J. Flory, “Principles of Polymer Chemistry” (Cornell U.P., Ithaca, 1953)

    Google Scholar 

  28. J. Huggins,J. Phys. Chem. 52 (1948) 248.

    Google Scholar 

  29. J. H. Hildebrand,J. Chem. Phys. 15 (1947) 225.

    Google Scholar 

  30. I. Gutzow, in “Amorphous Materials”, edited by R. W. Douglas and B. Ellis (Wiley and Sons, London, 1971), p. 159.

    Google Scholar 

  31. Idem, Compt. Rend. Bulg. Acad. Sci. 29 (1976) 85.

    Google Scholar 

  32. D. Turnbull,J. de Physique 35 (1974) C1.

    Google Scholar 

  33. V. F. Ukhov, E. L. Dubinin, O. A. Esin andN. A. Vatolin,Russ. J. Phys. Chem. 42 (1968) 1391.

    Google Scholar 

  34. W. Merz andF. Sauerwald,Acta Met. 14 (1966) 1617.

    Google Scholar 

  35. F. Spaepen andD. Turnbull, in “Rapidly Quenched Metals” edited by N. J. Grant and B. C. Giessen (MIT Press, Cambridge, Massachusetts, 1976) p. 205.

    Google Scholar 

  36. Yu. S. Cherkiuskii,Sov. Phys-Dokl. 21 (1976) 55.

    Google Scholar 

  37. “Handbook of Chemistry and Physics”, edited by R. C. Weast (CRS Press, Cleveland, Ohio, 1975–76), p. 209.

    Google Scholar 

  38. C. J. Smithells, “Metals Reference Book” (Butterworths, London, 1967), p. 139.

    Google Scholar 

  39. H. S. Chen andE. Coleman,Appl. Phys. Letters 28 (1976) 245.

    Google Scholar 

  40. D. Gupta, K. N. Tu andK. W. Asai,Phys. Rev. Letters35 (1975) 380.

    Google Scholar 

  41. M. Cohen andD. Turnbull,Nature 189 (1961) 131.

    Google Scholar 

  42. C. H. Bennett, D. E. Polk andD. Turnbull,Acta Met. 19 (1971) 1295.

    Google Scholar 

  43. D. E. Polk,ibid 20 (1972) 485.

    Google Scholar 

  44. D. E. Polk,Scripta Met. 4 (1970) 117.

    Google Scholar 

  45. H. S. Chen andB. K. Park,Acta Met. 21 (1973) 395.

    Google Scholar 

  46. K. L. Chopra, “Thin Film Phenomena” (McGraw-Hill, New York, 1969) p. 195.

    Google Scholar 

  47. S. R. Nagel andJ. Tauc,Phys. Rev. Letters 35 (1975) 380.

    Google Scholar 

  48. D. R. Uhlmann,J. Non-Cryst. Solids 7 (1972) 337.

    Google Scholar 

  49. H. A. Davies,ibid 17 (1975) 266.

    Google Scholar 

  50. F. Spaepen andD. Turnbull, Paper presented at the American Society for Metals Seminar, Niagara Falls, 1976: to be published.

  51. E. Fukushima andA. Ookawa,J. Phys. Soc. Japan 10 (1955) 970.

    Google Scholar 

  52. Ya. A. Kraftmakher andP. G. Strelkov, in “Vacancies and Interstitials in Metals”, edited by A. Seegeret al. (North-Holland, Ansterdam, 1970), p. 183.

    Google Scholar 

  53. B. C. Eyre, M. H. Loretto andR. L. Smallman, in “Proceedings Vacancies 76 Conferlence” (Metals Society, London, 1977) in the press.

    Google Scholar 

  54. R. Bullough andB. L. Eyre, to be published.

  55. R. Bullough, private communication, 1976.

  56. M. O'Keeffe, in “The Chemistry of Extended Defects in Non-Metallic Solids”, edited by L. Eyring and M. O'Keeffe (North-Holland, Amsterdam, 1970) p. 609.

    Google Scholar 

  57. T. Gorecki,Z. Metallk. 65 (1974) 426.

    Google Scholar 

  58. R. M. J. Cotterill, W. D. Kristenson andE. J. Jensen,Phil. Mag. 27 (1973) 623;30 (1974) 229, 245.

    Google Scholar 

  59. R. M. J. Cotterill, E. J. Jensen andW. D. Kristenson, R. Paetsch andP. O. Esbjørn,J. de Physique 36 (1975) C2–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Department of Metallurgical Engineering, Banaras Hindu University, Varanasi-5, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandrarao, P., Cantor, B. & Cahn, R.W. Free volume theories of the glass transition and the special case of metallic glasses. J Mater Sci 12, 2488–2502 (1977). https://doi.org/10.1007/BF00553936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553936

Keywords

Navigation