Skip to main content
Log in

Viscoelastic analysis of a polyurethane thermosetting resin under relaxation and at constant compression strain rate

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The evolution of the viscoelastic behaviour of a polyurethane resin was investigated on the basis of uniaxial compression tests in stress relaxation and at constant strain rate. Both methods were applied to PUR specimens whose curing cycle was interrupted at different steps. The experimental data were precisely modelled in terms of a three-parameter constitutive equation whose general form was derived from the Kohlrausch relaxation law. The viscoelastic behaviour was followed during the cross-linking process and during the final cooling ramp. A close correlation was found between the degree for cross-linking and the elastic modulus increase during the curing period. Furthermore, it was stated that the evolution of the viscoelastic parameters during the cooling phase describes in a quantitative way the construction of the glassy behaviour and that it controls the development of internal stresses in PUR mouldings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Brydson, “Plastic Materials”, Butterworth Scientific, Lond (1982).

    Google Scholar 

  2. D. L. Questad,Ind. Eng. Chem. Prod. Res. Dev. 22 (1983) 138.

    Google Scholar 

  3. J. Blackwell andJ. R. Quay,J. Polym. Sci. 22 (1984) 1247.

    Google Scholar 

  4. J. P. Trotignon, M. Piperaud, J. Verdu andA. Dobraczynsk, “Précis de Matiéres Plastiques”, Afnor-Nathan, Paris (1986).

    Google Scholar 

  5. D. C. Miles andJ. H. Briston, “Technologie des Polymères”, Dunod, Paris (1968).

    Google Scholar 

  6. J. Delmonte, “Technology of Carbon and Graphite Fiber Composites”, Van Nostrand Reinhold, New York (1981).

    Google Scholar 

  7. “Methods of Testing Plastics”, British Standards Institution (1970) BS 2782.

  8. Harrah andA. Laudouard,Rheol. Acta 24 (1985) 596.

    Google Scholar 

  9. J. M. Dealy, “Rheometers for Molten Plastics”, Van Nostrand Reinhold, New York (1982).

    Google Scholar 

  10. P. J. Heinle andM. A. Rogers,SPE J. 25 (1969).

  11. R. P. White, Jr.,Polym. Eng. Sci. 14 (1974) 50.

    Google Scholar 

  12. E. B. Richter andC. W. Macosko, ——ibid. 20 (1980) 921.

    Google Scholar 

  13. L. Buckley andD. Roylance, ——ibid. 22 (1982) 166.

    Google Scholar 

  14. C. W. Macosko andD. R. Miller,Macromol. 9 (1976) 199.

    Google Scholar 

  15. R. A. Fava, “Methods of Experimental Physics”, Vol. 16. Part C Academic Press, New York (1980).

    Google Scholar 

  16. R. P. Brown andF. N. B. Bennet,Polym. Testing 2 (1981) 125.

    Google Scholar 

  17. C. Bord, R. Giallonardo, P. A. Sporli andG. Verchery, “Guide des Matières Plastiques en Mécanique”, Cetim-Batelle, Senlis (1976).

    Google Scholar 

  18. J. D. Ferry, “Viscoelastic Properties of Polymers”, John Wiley and Sons, New York (1970).

    Google Scholar 

  19. J. J. Aklonis andW. J. Macknight, “Introduction to Polymer Viscoelasticity”, John Wiley and Sons, New York (1983).

    Google Scholar 

  20. C. D. Han, “Rheology in Polymer Processing”, Academic Press, New York (1976).

    Google Scholar 

  21. K. Walters, “Rheometry”, Chapman and Hall, London (1975).

    Google Scholar 

  22. J. F. Agassant, P. Avenas andJ. Ph. Sergent, “La Mise en Forme des Matières Plastiques — Approche Thermomcanique”, Technique et Documentation Lavoisier, Paris (1986).

    Google Scholar 

  23. P. E. Rouse,J. Chem. Phys. 21 (1953) 1272.

    Google Scholar 

  24. B. H. Zimm, ——ibid. 24 (1956) 269.

    Google Scholar 

  25. J. Heijboer,Ann. New York Acad. Sci. 279 (1976) 104.

    Google Scholar 

  26. R. F. Boyer,Polymer 17 (1976) 996.

    Google Scholar 

  27. R. Kohlrausch,Ann. Phys. Lpz 12 (1847) 393.

    Google Scholar 

  28. L. C. E. Struik, “Physical Aging in Amorphous Polymers and Other Materials”, Eisevier, Amsterdam (1978).

    Google Scholar 

  29. J. Ferez,J. Phys. Colloque C9 44 (1983) 3.

    Google Scholar 

  30. E. Polak, “Computationnal Methods in Optimization”, Academic Press, New York (1971).

    Google Scholar 

  31. K. W. Brodlie, in “The State of Art in Numerical Analysis” (edited by D. A. H. Jacobs) Academic Press, London (1977).

    Google Scholar 

  32. C. G'sell andJ. J. Jonas,J. Mater. Sci. 16 (1981) 1956.

    Google Scholar 

  33. E. H. Lee, T. G. Rogers andT. C. Woo,J. Amer. Ceram. Soc. 48 (1985) 480.

    Google Scholar 

  34. R. Daviaud andG. Filliatre, “Introduction aux Matériaux Composites”, Vol. I. C.N.R.S., Paris (1983).

    Google Scholar 

  35. S. W. Tsai andH. T. Hahn, “Introduction to Composite Materials”, Technomic Publication, Westport (1980).

    Google Scholar 

  36. J. V. Noyes andB. H. Jones, Proceedings of the 9th AIAA/ASME Conference on “Structure, Dynamics and Material” (1968), Paper 68–336.

  37. J. J. Hermans,Proc. Konikl. Neder. Akad. Westenschappen B70 (1967) 1.

    Google Scholar 

  38. W. Aichele andM. Diez,Kunstostoffe 77 (1987) 168.

    Google Scholar 

  39. G. M. Bartenev,Zh. Tekhn. Fiz. 19 (1949) 1423.

    Google Scholar 

  40. O. S. Narayanaswamy,J. Amer. Ceram. Soc. 52 (1969) 554.

    Google Scholar 

  41. E. H. Lee andT. G. Rogers,J. Appl. Mech. 30 (1963) 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leterrier, Y., G'sell, C. Viscoelastic analysis of a polyurethane thermosetting resin under relaxation and at constant compression strain rate. J Mater Sci 23, 4209–4216 (1988). https://doi.org/10.1007/BF00551910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551910

Keywords

Navigation