Skip to main content
Log in

A mathematical description of transient crack growth behaviour in glass

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transient crack growth behaviour resulting from time-dependent changes in crack-tip radius can occur near the fatigue limit. In the present work, mathematical expressions describing this transient behaviour are developed assuming that a dissolution reaction is responsible for changes in crack geometry. An elliptical crack is analysed because of its mathematical simplicity. The theoretical model slightly underestimates the extent of crack-tip blunting occurring below the fatigue limit. However, the predicted transient behaviour associated with the crack-tip sharpening processes which take place above the fatigue limit compares favourably with experimental data for glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn,Int. J. Fract. Mech. 4 (1968) 171.

    Google Scholar 

  2. Idem, in “Fracture Mechanics of Ceramics”, Vol. 2, Edited by R. Bradt, D. P. Hasselman and F. F. Lange (Plenum, New York, 1974) pp. 613–646.

    Google Scholar 

  3. J. B. Wachtman, Jr.,J. Amer. Ceram. Soc. 57 (1974) 509.

    Google Scholar 

  4. B. J. S. Wilkins andR. Dutton,ibid. 59 (1976) 108.

    Google Scholar 

  5. R. J. Charles,J. Appl. Phys. 29 (1958) 1549.

    Google Scholar 

  6. S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.

    Google Scholar 

  7. W. B. Hillig andR. J. Charles, “High-Strength Materials,” edited by V. F. Zackay (John Wiley and Sons, New York, 1965) pp. 681–705.

    Google Scholar 

  8. C. F. Inglis,Trans. Inst. Naval Architecture, London,55 (1913) 219.

    Google Scholar 

  9. T. A. Michalske, in “Fracture Mechanics of Ceramics,” Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) pp. 277–290.

    Google Scholar 

  10. S. Ito andM. Tomozawa,Comm. Amer. Ceram. Soc. 11 (1981) 160.

    Google Scholar 

  11. D. Hubbard andE. H. Hamilton,J. Res. Nat. Bur. Stand. 27 (1941) 143.

    Google Scholar 

  12. S. D. Brown,J. Amer. Ceram. Soc. 62 (1979) 515.

    Google Scholar 

  13. T. A. Michalske andS. W. Frieman,ibid. 66 (1983) 284.

    Google Scholar 

  14. H. Eyring andE. M. Eyring, in “Modern Chemical Kinetics,” edited by H. H. Sisler and C. A. Vanderwerf (Reinhold, New York, 1962) Ch. 4.

    Google Scholar 

  15. E. R. Fuller, private communication (1983).

  16. M. G. Schwabel andV. D. Frechette, Paper 36-B-78, Presented at the 80th Annual Meeting of the American Ceramic Society, Detroit, Michigan, May 6–11, 1978,Amer. Ceram. Soc. Bull. 57 (1978) 307.

    Google Scholar 

  17. M. G. Schwabel, Ph.D. Thesis, New York State College of Ceramics, Alfred University, Alfred, NY (1978).

    Google Scholar 

  18. S. Ito andM. Tomozawa,J. Amer. Ceram. Soc. 65 (1982) 368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by Division of Materials Sciences, U.S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferber, M.K. A mathematical description of transient crack growth behaviour in glass. J Mater Sci 19, 2570–2574 (1984). https://doi.org/10.1007/BF00550811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550811

Keywords

Navigation