Skip to main content
Log in

Theoretical estimation of fracture toughness of fibrous composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A method of estimating the fracture surface energy of fibre-reinforced materials is discussed. The surface work is shown to increase with increasing fibre content, strength and diameter, and decrease with increasing fibre modulus and matrix flow stress (or hardness).

Relatively short fibres should be used if high toughness is required, and the maximum toughness that can be achieved is limited by the amount of crack opening that can be permitted. Under certain conditions, incorporation of fibres into a material can lead to embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

half length of crack

d :

fibre diameter

D :

average separation of nearest neighbour fibres

E :

Young's modulus

G :

shear modulus of matrix

K :

fracture toughness

L :

length of fibre on either side of crack

n :

number of fibres per unit area

P :

force on fibre

R :

pressure exerted by matrix on fibres

u :

displacement

U :

work

x :

distance

β :

8 G/d 2 E fr log(2π/p √ 3)

γ :

surface energy or work

ε:

tensile strain

φ :

σfm E mr/Efr R

σ:

tensile stress

Τ:

shear stress

μ:

coefficient of friction

ν:

Poisson's ratio

c:

composite

e:

elastic

f:

fibre

m:

matrix

References

  1. A. Kelly and G. J. Davies, Met. Rev. 10 (1965) 1.

    Google Scholar 

  2. M. R. Piggott, Acta Met. 14 (1966) 1429.

    Google Scholar 

  3. D. Cratchley, Met. Rev. 10 (1965) 79.

    Google Scholar 

  4. N. J. Wadsworth and I. Spilling, Brit. J. Appl. Phys. 1 (1968) 1049.

    Google Scholar 

  5. G. Cooper and A. Kelly, J. Mech. Phys. Solids 15 (1967) 279.

    Google Scholar 

  6. A. H. Cottrell, Proc. Roy Soc. A282 (1964) 2.

    Google Scholar 

  7. C. O. Hulse and B. A. Jacob, Am. Ceram. Bull. 47 (1968) 371.

    Google Scholar 

  8. S. D. Antolovich, Metal Sci. 3 (1969) 45.

    Google Scholar 

  9. D. Cratchley and A. A. Baker, Metallurgia 69 (1964) 153.

    Google Scholar 

  10. J. O. Outwater and M. C. Murphy, 24th Ann. Tech. Conf., Soc. Plastic Industry Section 11-C, p.1.

  11. G. Cooper and A. Kelly, ASTM STP 452 (1969) 90.

    Google Scholar 

  12. D. L. Mcdaniels, A. W. Jech, and J. W. Weeton, Trans. Metall. Soc. AIME 233 (1965) 636.

    Google Scholar 

  13. L. J. Ebert, S. S. Hecker, and C. H. Hamilton, J. Comp. Mat. 2 (1968) 458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piggott, M.R. Theoretical estimation of fracture toughness of fibrous composites. J Mater Sci 5, 669–675 (1970). https://doi.org/10.1007/BF00549751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549751

Keywords

Navigation