Skip to main content
Log in

Zur Elektronenstruktur von metallorganischen Komplexen der f-elemente

I. Uranocen

The electronic structure of organometallic complexes involving f-electrons

I. Uranocene

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The temperature dependence of the magnetic susceptibility of Uranocene ((C8H8)2U(IV)) between 1.25 and 298 K has been measured for the first time and the results correlated with a systematic study of the crystal field splitting. Independent estimates of the three crystal field parameters B 02 , B 04 and B 06 were obtained by adopting the purely electrostatic approach, the angularoverlap-model and the MHW-MO-method. Subsequently the crystal field splitting pattern was calculated by a simultaneous diagonalisation of the complete f 2-matrix.

Assuming rigorous D 8h-crystal field symmetry, a crystal field splitting pattern involving a singlet ground state and a low lying first excited doublet state (ΔE=17cm−1, ¦ΔJ2¦ = 1) gives the best agreement with both the MO-results and the experimental findings. The experimental l/χ-vs-T-curve is reproduced to a good approximation by a calculation employing the optimal parameter set: B 02 = −5610, B 04 = −1426,B 06 = −730cm−1.

A crystal field of slightly lowered symmetry having a significantly split doublet ground state and hence positive B 02 -values cannot be completely ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Hayes,R.G., Thomas,J.L.: Organometal. Chem. Rev. A 7, 1 (1972)

    Google Scholar 

  2. Kanellakopulos,B., Bagnall,K.W.: In: Lanthanides and actinides, MTP Intern. Rev. Sci. Inorg. Chem. Ser. L, Vol. 7. Baltimore: University Park Press 1972

    Google Scholar 

  3. Streitwieser,Jr.,A., Müller-Westerhoff,U.: J. Am. Chem. Soc. 90, 7364 (1968)

    Google Scholar 

  4. Streitwieser,Jr.,A., Müller-Westerhoff,U., Sonnichsen,G., Mares,F., Morell,D.G., Hodgson,K.O., Harmon,C.A.: J. Am. Chem. Soc. 95, 8644 (1973)

    Google Scholar 

  5. Harmon,C.A., Streitwieser,Jr.,A.: J. Am. Chem. Soc. 94, 8926 (1973)

    Google Scholar 

  6. Zalkin,A., Raymond,K.N.: J. Am. Chem. Soc. 91, 5667 (1969)

    Google Scholar 

  7. Avdeef,A., Raymond,K.N., Hodgson,K.O., Zalkin,A.: Inorg. Chem. 11, 1083 (1972)

    Google Scholar 

  8. Karraker,D.G.: Inorg. Chem. 12, 1105 (1973)

    Google Scholar 

  9. Karraker,D.G., Stone,J.A., Jones,E.R., Edelstein,N.: J. Am. Chem. Soc. 92, 4841 (1970)

    Google Scholar 

  10. Edelstein,N., Lamar,G.N., Mares,F., Streitwieser,Jr.,A.: UCRL-20413

  11. Streitwieser,Jr.,A., Dempf,D., Lamar,G.N., Karraker,D.G., Edelstein,N.: J. Am. Chem. Soc. 93, 7343 (1971)

    Google Scholar 

  12. Amberger,H.-D.: Diss. Technische Universität, München 1972

  13. Hayes,R.G., Edelstein,N.: J. Am. Chem. Soc. 94, 8688 (1972)

    Google Scholar 

  14. Amberger,H.-D.: In Vorbereitung

  15. Chan,S.-K., Lam,D.J.: Nucl. Met. Soc. AIME 17, 219 (1970)

    Google Scholar 

  16. Jahn,H.A., Teller,E.: Proc. Roy. Soc. (London) A 161, 220 (1937)

    Google Scholar 

  17. vanVleck,J.H.: Theory of electric and magnetic susceptibilities. Oxford: University Press 1932

    Google Scholar 

  18. Watanabe,H.: Operator methods in ligand field theory. Englewood Cliffs, N.J.: Prentice Hall 1966

    Google Scholar 

  19. Lenander,C.J.: Phys. Rev. 130, 1033 (1963)

    Google Scholar 

  20. Jørgensen,C.K., Pappalardo,R., Schmidtke,H. H.: J. Chem. Phys. 39, 1422 (1965)

    Google Scholar 

  21. Schäffer,C.E., Jørgensen,C.K.: Mol. Phys, 9, 401 (1965)

    Google Scholar 

  22. Friedman,Jr.,H.G., Choppin,G.R., Feuerbacher,D.G.: J. Chem. Educ. 41, 354 (1964)

    Google Scholar 

  23. Elliott,R.J., Stevens,K.W.H.: Proc. Roy. Soc. (London) A 215, 437 (1952)

    Google Scholar 

  24. Stevens,K.W.H.: Proc. Phys. Soc. (London) A 65, 209 (1952)

    Google Scholar 

  25. Axe,J.D., Burns,G.: Phys. Rev. 152, 331 (1966)

    Google Scholar 

  26. Satten,R.A., Schreiber,C.L., Wong,E.Y.: J. Chem. Phys. 42, 162 (1965)

    Google Scholar 

  27. Gruber,J.B., Menzel,E.R.: J. Chem. Phys. 51, 3816 (1969)

    Google Scholar 

  28. Wolfsberg,M., Helmholz,L.: J. Chem. Phys. 20, 837 (1952)

    Google Scholar 

  29. Fischer,R.D.: Theoret. Chim. Acta (Berl.) 1, 418 (1963)

    Google Scholar 

  30. Ballhausen,C. J., Gray,H.B.: Molecular orbital theory. New York: Benjamin 1963

    Google Scholar 

  31. Jørgensen,C.K.: Struct. Bonding 13, 199 (1973)

    Google Scholar 

  32. Clementi,E.: IBM J. Res. Develop. Suppl. 9, 2 (1969)

    Google Scholar 

  33. Jørgensen,C.K.: J. Phys. 26, 825 (1965)

    Google Scholar 

  34. Condon,E.U., Shortley,G.H.: The theory of atomic spectra. Cambridge: University Press 1959

    Google Scholar 

  35. Spedding,F.H.: Phys. Rev. 58, 255 (1940)

    Google Scholar 

  36. Dieke,G.H.: Spectra and energy levels of rare earth ions in crystals. New York: Interscience Publishers 1968

    Google Scholar 

  37. Rotenberg,M., Bevins,R., Metropolis,N., Wooten,Jr.,J. K.: The 3-j and 6-j symbols. Cambridge, Massachusetts: The Technology Press, M.I.T. 1959

    Google Scholar 

  38. Nielson,C.W., Koster,G.F.: Spectroscopic coefficients for the p n, dn, and fn configurations. Cambridge: M.I.T. Press 1963

    Google Scholar 

  39. McLaughlin,R.: J. Chem. Phys. 36, 2699 (1962)

    Google Scholar 

  40. Hecht,H.G., Lewis,W.B., Eastman,M.P.: Advan. Chem. Phys. 21, 351 (1971)

    Google Scholar 

  41. Rigny,P., Dianoux,A.J., Plurien,P.: J. Phys. Chem. Solids 32, 1175 (1971)

    Google Scholar 

  42. Pappalardo,R., Jørgensen,C.K.: Helv. Phys. Acta 37, 79 (1964)

    Google Scholar 

  43. Ballhausen,C.J.: Introduction to ligand field theory. New York: McGraw-Hill 1962

    Google Scholar 

  44. Gerloch,M., Miller,J.R.: In: Progr. Inorg. Chem. 10, 1 (1968)

    Google Scholar 

  45. Judd,B.R.: Operator techniques in atomic spectroscopy. New York: McGraw-Hill 1963

    Google Scholar 

  46. Evans,S., Green,J.C., Jackson,S.E., Higginson,B.: J. C. S. Dalton 304 (1974)

  47. vanOven,H.O., de Leifde Meijer,H. J.: J. Organometal. Chem. 19, 373 (1969)

    Google Scholar 

  48. Thomas,J.L., Hayes,R.G.: Inorg. Chem. 11, 348 (1972)

    Google Scholar 

  49. Jörgensen,C.K.: Chimia 27, 203 (1973)

    Google Scholar 

  50. Prins,R., vanVoorst,J.D.W.: Chem. Phys. Letters 1, 54 (1967)

    Google Scholar 

  51. Newman,D.J.: Advan. Phys. 20, 197 (1971)

    Google Scholar 

  52. Kramers,H.A.: Collected scientific papers. Amsterdam 1956

  53. Gray,H.B., Beach,N.A.: J. Am. Chem. Soc. 85, 2922 (1963)

    Google Scholar 

  54. Schatz,P.N., Movery,D.: Zitiert in J. Am. Chem. Soc. 95, 8644 (1973)

    Google Scholar 

  55. Eisenstein,J.C., Pryce,M.H.L.: Proc. Roy. Soc. 255A, 181 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amberger, H.D., Fischer, R.D. & Kanellakopulos, B. Zur Elektronenstruktur von metallorganischen Komplexen der f-elemente. Theoret. Chim. Acta 37, 105–127 (1975). https://doi.org/10.1007/BF00549563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549563

Key word

Navigation