Skip to main content
Log in

Lifetime statistics for single Kevlar 49 filaments in creep-rupture

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experimental data are presented for the lifetime of single Kevlar 49 filaments under moderate to high stress levels at standard ambient conditions (21°C, 65% r.h.). Filaments were drawn from two spools, A and B, taken from the same production lot. Previously we found that filaments from spool A were 7% lower in mean strength but much less variable in diameter than filaments from spool B; however, the respective variabilities in failure stress were equivalent. The lifetime data were interpreted in light of a previously developed kinetic model embodying Weibull failure statistics and power law dependence of lifetime on stress level. As predicted, lifetime data at each stress level generally followed a two-parameter Weibull distribution with a shape parameter value near 0.2. Based on absolute stress levels, the filaments drawn from spool B had a Weibull scale parameter for lifetime about ten times greater than those from spool A; however, when the stress-levels were normalized by the respective Weibull scale parameters for short-term strength, these differences disappeared. With respect to power law dependence of lifetime on stress level, three distinct time domains emerged, each marked by a different power law exponent. Similar behaviour was observed earlier for preproduction Kevlar 49/epoxy strands, and the values for the power law exponents for the filaments agree closely with those for the strands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Phoenix and E. M. Wu, “Statistics for the Time-Dependent Failure of Kevlar 49/Epoxy Composites: Micromechanical Modeling and Data Interpretation”, Report No. UCRL-53365, (Lawrence Livermore National Laboratory, Livermore, California, 1983).

    Google Scholar 

  2. S. L. Phoenix, Int. J. Fracture 14 (1978) 327.

    Google Scholar 

  3. Idem, Statistical Modeling of the Time and Temperature Dependent Failure of Fibrous Composites, in Proceedings of the Ninth US National Congress of Applied Mechanics, Book no. H00228 (The American Society of Mechanical Engineers, New York, 1982) p. 219.

    Google Scholar 

  4. S. L. Phoenix and L-J. Tierney, Eng. Fract. Mech. 18 (1983) 193.

    Google Scholar 

  5. S. L. Phoenix and C. C. Kuo, Recent Advances in Statistical and Micromechanical Modeling of the Time Dependent Failure of Fibrous Composites, in 1983 Advances in Aerospace Structures, Materials and Dynamics -AD-06, Book no. H00272 (The American Society of Mechanical Engineers, New York, 1983) p. 169.

    Google Scholar 

  6. M. G. Dobb, D. J. Johnson and B. P. Saville, J. Polym. Sci. Polym. Phys. Ed. 15 (1977) 2201.

    Google Scholar 

  7. M. G. Dobb, D. J. Johnson, A. Majeed and B. P. Saville, Polymer 20 (1980) 1284.

    Google Scholar 

  8. R. J. Morgan, C. O. Pruneda and W. J. Steele, J. Polym. Sci Polym. Phys. Ed. 21 (1983) 1757.

    Google Scholar 

  9. M. G. Northolt, Polymer 21 (1980) 1199.

    Google Scholar 

  10. R. H. Ericksen, ibid. 26 (1985) 733.

    Google Scholar 

  11. I. M. Brown, T. C. Sandreczki and R. J. Morgan, ibid. 25 (1984) 759.

    Google Scholar 

  12. B. D. Coleman and A. G. Knox, Text. Res. J. 27 (1957) 393.

    Google Scholar 

  13. B. D. Coleman, J. Polym. Sci. 20 (1956) 447.

    Google Scholar 

  14. R. E. Wilfong and J. Zimmerman, J. Appl. Polym. Sci. Appl. Polym. Symp. 31 (1977) 1.

    Google Scholar 

  15. H. Eyring, J. Chem. Phys. 4 (1936) 283.

    Google Scholar 

  16. A. Tobolsky and H. Eyring, ibid. 11 (1943) 125.

    Google Scholar 

  17. B. D. Coleman, J. Appl. Phys. 11 (1956) 862.

    Google Scholar 

  18. S. N. Zhurkov, Int. J. Fract. Mech. 1 (1965) 311.

    Google Scholar 

  19. S. N. Zhurkov and V. E. Korsukov, J. Polym. Sci. Polym. Phys. Ed. 12 (1974) 385.

    Google Scholar 

  20. Y. Y. Gotlib, A. V. Dobrodumov, A. M. El'Yashevich and Y. E. Svetlov, Sov. Phys. Solid Slate 15 (1973) 555.

    Google Scholar 

  21. A. V. Dobrodumov and A. M. El'Yashevich, ibid. 15 (1973) 1259.

    Google Scholar 

  22. C. B. Henderson, P. H. Graham and C. N. Robinson, Int. J. Fract. Mech. 6 (1970) 33.

    Google Scholar 

  23. J. Smook, W. Hamersma and A. J. Pennings, J. Mater. Sci. 19 (1984) 1359.

    Google Scholar 

  24. W. A. Stepanov and V. V. Shpeizman, Mater. Sci. Eng. 49 (1981) 195.

    Google Scholar 

  25. D. C. Prevorsek and W. J. Lyons, J. Appl. Phys. 35 (1964) 3152.

    Google Scholar 

  26. D. C. Prevorsek, J. Polym. Sci. Symp. 32 (1971) 343.

    Google Scholar 

  27. R. M. Christensen, J. Rheol. 25 (1981) 517.

    Google Scholar 

  28. R. M. Christensen and R. E. Glaser, J. Appl. Mech. 52 (1985) 1.

    Google Scholar 

  29. R. E. Glaser, R. M. Christensen and T. T. Chiao, Comp. Tech. Rev. (1985) submitted.

  30. R. M. Christensen, Int. J. Solids Struct. 20 (1984) 791.

    Google Scholar 

  31. H. D. Wagner, S. L. Phoenix and P. Schwartz, J. Compos. Mat. 18 (1984) 312.

    Google Scholar 

  32. F. P. Gerstle and S. G. Kunz, in “Prediction of Long-Term Failure in Kevlar 49 Composites, in Proceedings of ASTM Symposium on Long-Term Behavior of Composites”, ASTM STP 813 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1983).

    Google Scholar 

  33. B. D. Coleman, J. Appl. Phys. 29 (1958) 968.

    Google Scholar 

  34. Idem, Trans. Soc. Rheol. 1 (1957) 153.

    Google Scholar 

  35. Idem, ibid. 2 (1958) 195.

    Google Scholar 

  36. W. Nelson, “Applied Life Data Analysis” (Wiley, New York, 1982).

    Google Scholar 

  37. W. Q. Meeker and W. Nelson, Technometrics 19 (1977) 473.

    Google Scholar 

  38. D. R. Thoman and L. J. Bain, ibid. 11 (1969) 805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, H.D., Schwartz, P. & Phoenix, S.L. Lifetime statistics for single Kevlar 49 filaments in creep-rupture. J Mater Sci 21, 1868–1878 (1986). https://doi.org/10.1007/BF00547921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547921

Keywords

Navigation