Skip to main content
Log in

Hemmung der Lipolyse im Fettgewebe durch Methylisoxazolcarbonsäuren

Inhibition of lipolysis in adipose tissue by methylisoxazolcarboxylic acids

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie Aims and scope Submit manuscript

Summary

5-Methylisoxazole-3-carboxylic acid (5-MICA) and 3-methylisoxazole-5-carboxylic acid (3-MICA) are strong inhibitors of fatty acid mobilization, 5-MICA being somewhat more potent than 3-MICA. Low doses of 5-MICA (20 μg/kg s.c.) depress plasma levels of unesterified fatty acids (UFA) in rats and small concentrations (10−7 m) reduce lipolysis in adipose tissue of fasting rats in vitro. 5-MICA acts on triglyceride hydrolysis, because it affects the release of UFA and glycerol to an equal extent. The antilipolytic effect is not associated with an increased reesterification, as the 14C-incorporation from glucose-U-14C into triglyceride-glycerol is reduced. Other pathways of glucose metabolism, however, such as oxidation to CO2 and fatty acid synthesis are stimulated. The incorporation of palmitate-1-14C into esterified fatty acids of isolated adipose tissue is also enhanced. Concentrations of 8·10−7 m 5-MICA totally prevent the lipolytic effects of caffeine and theophylline. On the other hand the lipolytic action of norepinephrine is only depressed to 70% by 8·10−5 m 5-MICA. The stronger inhibitory effect of 5-MICA on the lipolytic response evoked by a blockade of the phosphodiesterase suggests, that the antilipolytic action of 5-MICA could depend on an activation of the 3′,5′-AMP-phosphodiesterase.

Zusammenfassung

5-Methylisoxazol-3-carbonsäure (5-MICS) und 3-Methyl-isoxazol-5-carbonsäure (3-MICS) lösen eine starke Hemmung der Fettsäuremobilisation aus, wobei 5-MICS etwas wirksamer als 3-MICS ist. 5-MICS senkt den Plasmaspiegel der unveresterten Fettsäuren (UFS) in einer Dosis von 20 μg/kg s.c. und vermindert die Hungerlipolyse am Fettgewebe in vitro in einer Konzentration von 10−7 m. 5-MICS wirkt auf die Triglyceridspaltung im Fettgewebe, da nicht nur weniger UFS, sondern auch weniger Glycerin freigesetzt werden. Eine erhöhte Wiederveresterung von Fettsäuren ist nicht beteiligt, da der 14C-Einbau von Glucose-U14-C in das Triglycerid-Glycerin sogar etwas abnimmt. Andere Stoffwechselwege der Glucose, die Oxydation zu CO2 und die Fettsäuresynthese werden dagegen durch 5-MICS gesteigert. Auch der Einbau von Palmitat-1-14C in die Fettsäureester des isolierten Fettgewebes nimmt zu. 5-MICS hebt die Coffein- und Theophyllinlipolyse in vitro schon in Konzentrationen von 8·10−7 m vollständig auf. Die Noradrenalinlipolyse wird jedoch durch 8·10−5 m 5-MICS nur um 70% reduziert. Der stärkere Effekt auf eine Lipolyse, die durch Phosphodiesterasehemmung ausgelöst wird, könnte ein Hinweis dafür sein, daß die antilipolytische Wirkung der 5-MICS auf einer Aktivierung der 3′,5′-AMP-Phosphodiesterase beruht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bergström, S., L. A. Carlson, and L. Orö: Effect of prostaglandins on catecholamine induced changes in the free fatty acids of plasma and in blood pressure in the dog. Acta physiol. scand. 60, 170 (1964).

    Google Scholar 

  • Bizzi, A., S. Garattini, and E. Veneroni: The action of salicylate in reducing plasma free fatty acids and its pharmacological consequences. Brit. J. Pharmacol. 25, 187 (1965).

    Google Scholar 

  • ——, and S. Garattini: Effect of 3,5-dimethylpyrazole on blood free fatty acids and glucose. Life Sci. 3, 1371 (1964).

    Google Scholar 

  • Bubenheimer, P., A. Hasselblatt u. U. Schwabe: Hemmung der Ketonämie bei Hunger und Insulinmangel durch 3,5-Dimethylisoxazol. Klin. Wschr. 44, 713 (1966).

    Google Scholar 

  • Butcher, R. W., R. J. Ho, H. C. Meng, and E. W. Sutherland: Adenosine-3′,5′-monophosphate in biological materials. II: The measurement of cyclic 3′,5′-AMP in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515 (1965).

    Google Scholar 

  • Carlson, L. A.: Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta med. scand. 173, 719 (1963).

    Google Scholar 

  • ——, and P. R. Bally: Inhibition of lipid mobilization. Handbook of Physiology, Section 5: Adipose Tissue, p. 557. Baltimore: Williams and Wilkins 1965.

    Google Scholar 

  • ——, and L. Orö: The effect of nicotinic acid on the plasma free fatty acids. Demonstration of a metabolic type of sympathicolysis. Acta med. scand. 172, 641 (1962).

    Google Scholar 

  • ——, and J. Östman: Effect of salicylates on plasma-free fatty acid in normal and diabetic subjects. Metabolism 10, 781 (1961).

    Google Scholar 

  • Cherkes, L. A., and E. L. Rozenfeldt: Effect of nicotinic acid on the blood sugar level and its relationship to adrenalin hyperglycemia. Biokhimiya 6, 58 (1941).

    Google Scholar 

  • Dole, V. P., and H. Meinertz: Microdetermination of long-chain fatty acids in plasma and tissues. J. biol. Chem. 235, 2595 (1960).

    Google Scholar 

  • Dulin, W. E., and G. C. Gerritsen: Hypoglycemic activity of 3,5-dimethyl-isoxazole. Proc. Soc. exp. Biol. (N.Y.) 113, 683 (1963).

    Google Scholar 

  • —— —— Effects of 5-carboxy-3-methylisoxazole on carbohydrate and fat metabolism. Proc. Soc. exp. Biol. (N.Y.) 121, 777 (1966).

    Google Scholar 

  • ——, and G. C. Gerritsen: Effects of 3,5-dimethylisoxazole (U-21221) on fat metabolism. Proc. Soc. exp. Biol. (N.Y.) 118, 499 (1965).

    Google Scholar 

  • Folch, J., M. Lees, and G. H. Sloanestanley: A simple method for the isolation and purification of total lipides from animal tissues. J. biol. Chem. 226, 497 (1957).

    Google Scholar 

  • Froesch, E. R., M. Waldvogel, U. A. Meyer, A. Jacob, and A. Labhart: Effects of 5-methylpyrazole-3-carboxylic acid on adipose tissue. I. Inhibition of lipolysis, effects on glucose, fructose, and glycogen metabolism in vitro and comparison with insulin. Molec. Pharmacol. 3, 429 (1967).

    Google Scholar 

  • Gerritsen, G. C., and W. E. Dulin: Effect of a new hypoglycemic agent, 3,5-dimethylpyrazole, on carbohydrate and free fatty acid metabolism. Diabetes 14, 507 (1965).

    Google Scholar 

  • —— —— The effect of 5-methylpyrazole-3-carboxylic acid on carbohydrate and free fatty acid metabolism. J. Pharmacol. exp. Ther. 150, 491 (1965).

    Google Scholar 

  • Handel, E. van: Suggested modifications of the micro determination of triglycerides. Clin. Chem. 7, 249 (1961).

    Google Scholar 

  • Hynie, S., G. Krishna, and B. B. Brodie: Theophylline as a tool in studies of the role of cyclic adenosine-3′,5′ monophosphate in hormone-induced lipolysis. J. Pharmacol. exp. Ther. 153, 90 (1966).

    Google Scholar 

  • Kerpel, S., E. Shafrir, and B. Shapiro: Mechanism of fatty acid assimilation in adipose tissue. Biochim. biophys. Acta (Amst.) 46, 495 (1961).

    Google Scholar 

  • Krishna, G., B. Weiss, J. I. Davies, and S. Hynie: Mechanism of nicotinic acid inhibition of hormone-induced lipolysis. Fed. Proc. 25, 719 (1966).

    Google Scholar 

  • Lambert, M., and A. C. Neish: Rapid method for estimation of glycerol in fermentation solutions. Canad. J. Res., Section B 28, 83 (1950).

    Google Scholar 

  • Lee, H. M., R. M. Ellis, and M. V. Sigal: Some insulin-like effects of nicotinic acid observed in isolated rat epididymal adipose tissue. Biochim. biophys. Acta (Amst.) 49, 408 (1961).

    Google Scholar 

  • Meltzer, R. I., A. D. Lewis, F. H. McMillan, J. D. Genzer, F. Leonard, and J. A. King: Antituberculur substances. III. Nonpyridinoid heterocyclic hydrazides. J. Amer. pharm. Ass. 42, 594 (1953).

    Google Scholar 

  • Morgan, G. T., and H. Burgess: Non-aromatic diazonium salts. Part VI. 3,5-Dimethylisoxazole-4-diazonium salts and their azoderivatives. J. chem. Soc. 119, 697 (1921).

    Google Scholar 

  • Reeves, R. E.: The estimation of primary carbinol groups in carbohydrates. J. Amer. chem. Soc. 63, 1476 (1941).

    Google Scholar 

  • Rizack, M. A.: Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′,5′-phosphate. J. biol. Chem. 239, 392 (1964).

    Google Scholar 

  • Schwabe, U., u. A. Hasselblatt: Abfall von Blutzucker und unveresterten Fettsäuren im Plasma nach Isoxazolderivaten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 121 (1965).

    Google Scholar 

  • —— —— Hemmung der Lipolyse im Fettgewebe durch 5-Methylisoxazol-3-carbonsäure. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 76 (1966).

    Google Scholar 

  • —— —— Vergleich der Wirkung von Insulin und 3,5-Dimethylisoxazol auf den Stoffwechsel der unveresterten Fettsäuren, Glycerin und Glucose. Klin. Wschr. 44, 707 (1966).

    Google Scholar 

  • Smith, D. L., A. A. Forist, and W. E. Dulin: 5-Methylpyrazole-3-carboxylic acid. The potent hypoglycemic metabolite of 3,5-dimethylpyrazole in rats. J. med. Chem. 8, 350 (1965).

    Google Scholar 

  • Steinberg, D., M. Vaughan, P. J. Nestel, O. Strand, and S. Bergström: Effects of the prostaglandins on hormone-induced mobilization of free fatty acids. J. clin. Invest. 43, 1533 (1964).

    Google Scholar 

  • Stock, K., u. E. Westermann: Hemmung der Lipolyse durch α-und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 334 (1966).

    Google Scholar 

  • Sutherland, E. W., J. Öye, and R. W. Butcher: The action of epinephrine and the role of the adenylcyclase system in hormone action. Recent Progr. Hormone Res. 21, 623 (1965).

    Google Scholar 

  • Vaughan, M., J. E. Berger, and D. Steinberg: Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. biol. Chem. 239, 401 (1964).

    Google Scholar 

  • Wieland, O., u. M. Suyter: Glycerokinase: Isolierung und Eigenschaften des Enzyms. Biochem. Z. 329, 320 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. F. v. Brücke zum 60. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwabe, U., Kerstein, E. & Hasselblatt, A. Hemmung der Lipolyse im Fettgewebe durch Methylisoxazolcarbonsäuren. Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 260, 1–15 (1968). https://doi.org/10.1007/BF00545003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00545003

Key-Words

Schlüsselwörter

Navigation