Skip to main content
Log in

An experimental investigation of the orthogonal (diamond) grain configuration in high temperature fatigue

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments on polycrystalline aluminium show that the cyclic grain boundary migration observed in high temperature fatigue leads ultimately to the development of the orthogonal (diamond) grain configuration. Angular measurements demonstrate that the grain boundaries migrate so that a large proportion (∼ 25%) lies in the angular range of 40 to 50° to the stress axis. Grain growth may occur during the migration process by the elimination of some small grains, although other small grains may increase in size when migration occurs in an outwards direction. Migration is initially rapid, but the rate of migration decreases after large numbers of fatigue cycles. As the rate of migration slows down, the grains become divided into subgrains, and the subgrain boundaries tend also to exhibit an orthogonal configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Ritter and N. J. Grant, “Thermal and High-Strain Fatigue” (The Institute of Metals, London, 1967) p. 80.

    Google Scholar 

  2. G. Wigmore and G. C. Smith, Met. Sci. J. 5 (1971) 58.

    Google Scholar 

  3. P. Yavari and T. G. Langdon, Scripta Metall. 14 (1980) 551.

    Google Scholar 

  4. V. Raman and T. G. Langdon, J. Mater. Sci. Lett. 2 (1983) 180.

    Google Scholar 

  5. T. G. Langdon, D. Simpson and R. C. Gifkins, ibid. 2 (1983) 25.

    Google Scholar 

  6. T. G. Langdon and R. C. Gifkins, Scripta Metall. 13 (1979) 1191.

    Google Scholar 

  7. Idem, Acta Metall. 31 (1983) 927.

    Google Scholar 

  8. T. G. Langdon, D. Simpson and R. C. Gifkins, ibid. 31 (1983) 939.

    Google Scholar 

  9. P. Yavari and T. G. Langdon, ibid. in press.

    Google Scholar 

  10. K. U. Snowden and J. N. Greenwood, Trans. Met. Soc. AIME 212 (1958) 91.

    Google Scholar 

  11. S. Takeuchi and T. Homma, Nippon Kinz. Gakk. (J. Jpn. Inst. Met.) 29 (1965) 521.

    Google Scholar 

  12. Idem, Trans. Jpn. Inst. Met. 7 (1966) 39.

    Google Scholar 

  13. J. T. Blucher and N. J. Grant, Trans. Met. Soc. AIME 239 (1967) 805.

    Google Scholar 

  14. V. Singh, P. Rama Rao, G. J. Cocks and D. M. R. Taplin, J. Mater. Sci. 12 (1977) 373.

    Google Scholar 

  15. D. H. Sastry, Y. V. R. K. Prasad, K. I. Vasu and P. Rama Rao, ibid. 8 (1973) 1517.

    Google Scholar 

  16. H. D. Williams and C. W. Corti, Met. Sci. J. 2 (1968) 28.

    Google Scholar 

  17. G. J. Cocks and D. M. R. Taplin, J. Australas. Inst. Met. 20 (1975) 210.

    Google Scholar 

  18. A. Gittins, Met. Sci. J. 2 (1968) 51.

    Google Scholar 

  19. T. Saegusa and J. R. Weertman, Scripta Metall. 12 (1978) 187.

    Google Scholar 

  20. K. U. Snowden, P. A. Stathers and D. S. Hughes, Res Mech. 1 (1980) 129.

    Google Scholar 

  21. K. U. Snowden, Met. Forum 4 (1981) 106.

    Google Scholar 

  22. H. J. Westwood and D. M. R. Taplin, Met. Trans. 3 (1972) 1959.

    Google Scholar 

  23. Idem, Mater. Sci. Eng. 9 (1972) 118.

    Google Scholar 

  24. Idem, J. Australas. Inst. Met. 20 (1975) 141.

    Google Scholar 

  25. R. P. Skelton, Met. Sci. J. 1 (1967) 140.

    Google Scholar 

  26. H. E. Evans and R. P. Skelton, ibid. 3 (1969) 152.

    Google Scholar 

  27. R. L. Stegman and M. R. Achter, Trans. Met. Soc. AIME 239 (1967) 742.

    Google Scholar 

  28. K. U. Snowden and J. N. Greenwood, ibid. 212 (1958) 626.

    Google Scholar 

  29. K. U. Snowden, Phil. Mag. 6 (1961) 321.

    Google Scholar 

  30. Idem, Acta Metall. 12 (1964) 295.

    Google Scholar 

  31. Idem, Phil. Mag. 14 (1966) 1019.

    Google Scholar 

  32. M. Kitagawa, Report No. 319, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois (1968).

    Google Scholar 

  33. R. A. Testin, Report No. 332, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois (1970).

    Google Scholar 

  34. M. Kitagawa and J. Morrow, Report No. 342, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois (1971).

    Google Scholar 

  35. J. H. Driver, Met. Sci. J. 5 (1971) 47.

    Google Scholar 

  36. R. P. Skelton, Met. Sci. 8 (1974) 56.

    Google Scholar 

  37. R. E. Lee and W. J. D. Jones, J. Mater. Sci. 9 (1974) 157.

    Google Scholar 

  38. K. U. Snowden and P. A. Stathers, Scripta Metall. 7 (1973) 1097.

    Google Scholar 

  39. Idem, J. Nucl. Mater. 67 (1977) 215.

    Google Scholar 

  40. P. Yavari and T. G. Langdon, Rev. Sci. Instrum. 54 (1983) 353.

    Google Scholar 

  41. S. Timoshenko and G. H. MacCullough, “Elements of Strength of Materials” 3rd edn (Van Nostrand, New York, 1951) p. 119.

    Google Scholar 

  42. K. U. Snowden, P. A. Stathers and D. S. Hughes, Nature 261 (1976) 305.

    Google Scholar 

  43. P. Yavari and T. G. Langdon, Acta Metall. in press.

  44. P. E. Brookes, N. Kirby and W. T. Burke, J. Inst. Met. 88 (1959–60) 500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, P., Langdon, T.G. An experimental investigation of the orthogonal (diamond) grain configuration in high temperature fatigue. J Mater Sci 18, 3219–3229 (1983). https://doi.org/10.1007/BF00544146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544146

Keywords

Navigation