Skip to main content
Log in

Optical absorption and EPR studies of borate glasses with PbCrO4 and Pb2CrO5 microcrystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The optical absorption (in the 400–1000 nm region) and electron paramagnetic resonance (EPR) spectra of 50PbO-20Cr2O3-(30-y)B2O3-yAl2O3 glasses and those crystallized by suitable thermal treatments have been studied. The results are applied to account for the crystallization process, which revealed the crystalline products due to PbCrO4 and Pb2CrO5, and crystallization yield was found to be drastically enhanced (by as much as ∼ 85 vol%) with Al2O3 additives. The addition of Al2O3 in the present glasses and/or the thermal treatments induce the optical absorption intensity in the visible region at the expense of the near infrared region and reflect a gradual decrease in the EPR linewidth, ΔH, at g∼2. The chromium in these cases most likely exists in a thermodynamic equilibrium between Cr3+ and Cr6+ oxidation states and the Al2O3 favours the Cr3+⇌Cr6+ nucleation transformation to accord with the above observations. In addition, the crystalline PbCrO4 and Pb2CrO5 comprise CrO 2−4 groups with the Cr6+ oxidation state of chromium. This presents a phenomenological correlation for a local symmetry similarity of the CrO 2−4 groups in glass and the microcrystalline products and observation of an enhanced crystallization yield due to Pb2CrO5 crystallites in the glasses using Al2O3 additives. The chromium occupying the tetragonal CrO 2−4 anion sites migrates rather easily from the glass (subject to the thermal treatment) to the growing nucleation sites of PbCrO4/Pb2CrO5, whereas those Cr3+ usually occupying the octahedral sites, which are associated with characteristically large stabilization energy, hardly play a direct role in the crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Brus, IEEE J. Quant. Electron. 22 (1986) 1909.

    Google Scholar 

  2. P. Roussignol, D. Ricord, C. Flytzanis and N. Neuroth, Phys. Rev. Lett. 62 (1989) 312.

    Google Scholar 

  3. S. Ram and K. A. Narayan, Ind. Engng Chem. Res. 26 (1987) 1051.

    Google Scholar 

  4. K. Toda and S. Morita, Appl. Phys. A 33 (1984) 231.

    Google Scholar 

  5. S. Morita and K. Toda, J. Appl. Phys. 55 (1984) 2733.

    Google Scholar 

  6. K. Toda and S. Morita, ibid. 57 (1985) 5325.

    Google Scholar 

  7. S. Ram and K. Ram, J. Mater. Sci. 23 (1988) 4541.

    Google Scholar 

  8. M. Irion, M. Cauzi, A. Levasseur, J. M. Reau and J. C. Brethous, J. Solid State Chem. 31 (1980) 285.

    Google Scholar 

  9. Y. Ito, K. Miyauchi and T. Oi, J. Non-Cryst. Solids 57 (1983) 389.

    Google Scholar 

  10. R. J. Landry, J. T. Fournier and C. G. Young, J. Chem. Phys. 46 (1967) 1285.

    Google Scholar 

  11. S. A. Brawer and W. B. White, J. Chem. Phys. 67 (1977) 2043.

    Google Scholar 

  12. A. Lempicki, L. Andrews, S. J. Nettel, B. C. McCollum and E. J. Solomon, Phys. Rev. Lett. 44 (1980) 1234.

    Google Scholar 

  13. L. J. Andrews, A. Lempicki and B. C. McCollum, J. Chem. Phys. 74 (1981) 5526.

    Google Scholar 

  14. F. Durville, B. Champagnon, E. Duval and G. Boulon, J. Phys. Chem. Solids 46 (1985) 701.

    Google Scholar 

  15. S. Sugano, Y. Tanabe and H. Hamimura, “Multiples of Transition Metal Ions in Crystals” (Academic Press, New York, 1970).

    Google Scholar 

  16. D. K. Sardar, M. D. Shinn and W. A. Sibley, Phys. Rev. B 26 (1982) 2382.

    Google Scholar 

  17. A. M. Stoneham, “Theory of Defects in Solids” (Oxford University Press, Oxford, 1975).

    Google Scholar 

  18. M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20 (1952) 837.

    Google Scholar 

  19. B. F. Mentzen, A. Latrach, J. Bouix and A. W. Hewart, Mater. Res. Bull. 19 (1984) 549.

    Google Scholar 

  20. A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of Transition Ions” (Clarendon Press, Oxford, 1970).

    Google Scholar 

  21. D. L. Griscom, J. Non-Cryst. Solids 13 (1973–74) 251.

    Google Scholar 

  22. J. S. Thorp and W. Hutton, J. Phys. Chem. Solids 42 (1981) 843.

    Google Scholar 

  23. I. Ardelean, G. Ilonga, M. Peteanu, E. Barbos and E. Indrea, J. Mater. Sci. 17 (1982) 1988.

    Google Scholar 

  24. J. C. M. Henning and H. Van Den Boom, Phys. Rev. B 8 (1973) 2255.

    Google Scholar 

  25. A. J. Wojtowicz and A. Lempicki, ibid. 39 (1989) 8695.

    Google Scholar 

  26. J. C. Ruckman, R. T. W. Morrison and R. H. Buck, J. Chem. Soc. Dalton Trans. 1 (1972) 426.

    Google Scholar 

  27. S. Ram, J. Magn. Mater. 82 (1989) 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram, S., Ram, K. & Shukla, B.S. Optical absorption and EPR studies of borate glasses with PbCrO4 and Pb2CrO5 microcrystals. J Mater Sci 27, 511–519 (1992). https://doi.org/10.1007/BF00543945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543945

Keywords

Navigation