Skip to main content
Log in

Matrix effects on lifetime statistics for carbon fibre-epoxy microcomposites in creep rupture

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experimental results are presented for the strength and lifetime in creep rupture of carbon-epoxy microcomposites consisting of seven carbon fibres (Hercules IM6) within an epoxy matrix (Dow DER 332 epoxy with Texaco Jeffamine T403 curing agent) in an approximately hexagonal configuration. Special attention was paid to clamping, specimen alignment, shock isolation and accurate lifetime measurement. The results were analysed using a previously developed model, which involves a Weibull distribution for fibre strength and micromechanical stress redistribution around fibre breaks where the matrix creeps in shear following a power law. The model yields Weibull distributions for both microcomposite strength and lifetime where the respective shape and scale parameters depend on model parameters such as the Weibull shape parameter for fibre strength, the exponent for matrix creep, and the effective load transfer length and critical cluster size for failed fibres. Experimental results were consistent with the theory, though a fractographic study suggested time-dependent debonding along the fibre-matrix interface as being a key mechanism. Arguments were given to suggest, however, that the overall analytical forms would essentially be preserved. The results were compared with earlier results using a different epoxy system (Dow DER 331 epoxy with DEH 26 curing agent). Values for the matrix creep exponent and the effective load transfer length were about double and triple respectively the values from the earlier study, leading to slightly reduced strength, about one-half the variability in lifetime, but almost one-half the value of the exponent for the power law relating microcomposite lifetime to stress level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Phoenix, P. Schwartz and H. H. Robinson IV, Composites Sci. Tech. 32 (1988) 81–120.

    Article  CAS  Google Scholar 

  2. D. S. Farquhar, F. M. Mutrelle, S. L. Phoenix and R. L. Smith, J. Mater. Sci. 24 (1989) 2151–2164.

    Article  CAS  Google Scholar 

  3. A. N. Netravali, R. B. Henstenburg, S. L. Phoenix and P. Schwartz, Polym. Compos. 10 (1989) 226–241.

    Article  CAS  Google Scholar 

  4. A. S. Watson and R. L. Smith, J. Mater. Sci. 20 (1985) 3260–3270.

    Article  Google Scholar 

  5. J. Gutans and V. Tamuzs, Mech. Comps. Mater. 20 (1984) 1107–1109 (in Russian).

    Google Scholar 

  6. R. B. Henstenburg and S. L. Phoenix, Polym. Compos. 10 (1989) 389–408.

    Article  CAS  Google Scholar 

  7. R. Gulino and S. L. Phoenix, J. Mater. Sci. (1990) in press.

  8. R. L. Smith, S. L. Phoenix, M. R. Greenfield, R. B. Henstenburg and R. E. Pitt, Proc. R. Soc. Lond. A388 (1983) 353–391.

    Article  Google Scholar 

  9. S. L. Phoenix and R. L. Smith, Int. J. Solid Structures 19 (1983) 479–496.

    Article  Google Scholar 

  10. D. C. Lagoudas, C. Y. Hui and S. L. Phoenix, ibid. 25 (1988), 45–66.

    Article  Google Scholar 

  11. H. H. Robinson IV, H. F. Wu, M. Ames and P. Schwartz, Rev. Sci. Instrum. 58 (1987) 436–440.

    Article  CAS  Google Scholar 

  12. H. D. Wagner, S. L. Phoenix and P. Schwartz, J. Compos. Mater. 18 (1984) 312–338.

    Article  Google Scholar 

  13. H. D. Wagner, J. Polym. Sci:. Polym. Phys. 27 (1989) 115–149.

    Article  CAS  Google Scholar 

  14. A. C. Cohen, Technometrics 7 (1965) 579–588.

    Article  Google Scholar 

  15. D. D. Mason, “Time Dependence of the Displacement Fields around Fibre Breaks in a Composite with a Power-Law Creeping Matrix”, Ph.D. Thesis, Cornell University, Ithaca, N.Y. 14853.

  16. R. Gulino, P. Schwartz and S. L. Phoenix, J. Mater. Sci. (1990) in press.

  17. R. A. Schapery, Int. J. Fracture 11 (1975) 141–159, 369–387, 549–562.

    Article  CAS  Google Scholar 

  18. R. M. Christensen, J. Rheology 25 (1981) 517–528.

    Article  Google Scholar 

  19. R. M. Christensen, and R. E. Glaser, ASME J. Appl. Mech. 52 (1985) 1–5.

    Article  CAS  Google Scholar 

  20. J. M. Whitney and L. T. Drzal, ASTM STP 937(Ameri can Society for Testing and Materials, Philadelphia, (1987) 179–196.

    Google Scholar 

  21. J. T. Shaffer in “Materials for Space-The Gathering Momentum, Proceedings of the 18th International SAMPE Technical Conference”, edited by J. T. Hoggatt, S. G. Hill, and J. C. Johonson, Seattle WA, 7–9 Oct., 1986.

  22. H. E. Daniels, Proc. Roy. Soc. London A 183 (1945) 405–435.

    Article  Google Scholar 

  23. L. N. McCartney and R. L. Smith, ASME J. Appl. Mech., 105 (1983) 601–608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otani, H., Phoenix, S.L. & Petrina, P. Matrix effects on lifetime statistics for carbon fibre-epoxy microcomposites in creep rupture. J Mater Sci 26, 1955–1970 (1991). https://doi.org/10.1007/BF00543630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543630

Keywords

Navigation