Skip to main content
Log in

Thermal stabilization of an active alumina and effect of dopants on the surface area

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The α-AI2O3 transformation of a monolithic active alumina has been increased from 1200 to ∼1380‡ C through structural incorporation of silica. This shift is significant since α-Al2O3 transformation determines the limits of the usefulness of these materials as catalysts and catalyst carriers. The thermal stabilization effect is optimized at around 6% silica doping. At elevated temperatures, the material containing no silica rapidly loses surface area, primarily by α-Al2O3 transformation, whereas the material containing excess silica loses surface area by classical sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Fridman, Tresta Organizatsii i Ratsional Elektronstansii, 9 (1954) 37; Referat. Zhur. Khim. (1956) Abstr. No. 48123.

    Google Scholar 

  2. J. C. Greaves and J. W. Linnett, Trans Faraday Soc. 54 (1958) 1323.

    Google Scholar 

  3. A. W. Miller and S. W. Roberts, Ind. Chem. 34 (1958) 141.

    Google Scholar 

  4. Alcoa Brochure, “Activated and Catalytic Aluminas” June 1 (1970).

  5. W. H. Gitzen, “Alumina as a ceramic material”, The American Ceramic Society, Inc. Special Publication No. 4 (1970).

  6. G. C. Bye and G. T. Simpkin, J. Amer. Ceram. Soc. 57 (1974) 367.

    Google Scholar 

  7. Y. Wakao and T. Hibino, Nagoya Kogyo Gijutsu Shikensho Hokoku 11 (1962) 588.

    Google Scholar 

  8. S. Mukherjee and H. Roy, Technology 3 (1966) 63.

    Google Scholar 

  9. M. D. Efros et al., Vetsi Akad. Nauk Belarus. SSR Ser. Khim. Nauk. 1 (1971) 9.

    Google Scholar 

  10. G. Fink, Natur. 52 (1965) 32.

    Google Scholar 

  11. S. E. Voltz et al., U.S. Patent 2,810,698, October 22 (1957).

  12. Idem, U.S. Patent 2,810,699, October 22 (1957).

  13. R. K. Iller, J. Amer. Ceram. Soc. 47 (1964) 339.

    Google Scholar 

  14. W. H. Gitzen and L. D. Hart, U.S. Patent 3,433, 894, May 13 (1969).

  15. Idem, U.S. Patent 3,433,895, May 13 (1969).

  16. B. E. Yoldas, Amer. Ceram. Soc. Bull. 54 (1975) 286.

    Google Scholar 

  17. Idem, J. Appl. Chem. Biotech. 23 (1973) 803.

    Google Scholar 

  18. Idem, Bull. Amer. Ceram. Soc. 54 (1975) 289.

    Google Scholar 

  19. Idem, “Methods of Forming Porous Transparent Alumina-Based Ceramics”, Presentation at the Ceramic Society 77th Annual Meeting, Washington, D.C., May (1975).

  20. Idem, J. Mater. Sci. 10 (1975) 1856.

    Google Scholar 

  21. Guy Ervin, nJun., Acta Crust. 5 (1952) 103.

    Google Scholar 

  22. Robert Tertain, Denis Papee and Jacques Charrier, Compt. Rend. 238 (1954) 98.

    Google Scholar 

  23. H. P. Rooksby, J. Appl. Chem. 8 (1958) 44.

    Google Scholar 

  24. H. P. Rooksby and C. J. M. Rooymans, Clay Miner. Bull. 4 (1961) 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoldas, B.E. Thermal stabilization of an active alumina and effect of dopants on the surface area. J Mater Sci 11, 465–470 (1976). https://doi.org/10.1007/BF00540927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540927

Keywords

Navigation